Exemple #1
0
 def progress(steps, elapsed):
     print '{} of {} processed ({} s)'.format(steps, len(queries),
                                              elapsed)
     util.metadata('steps', steps)
     util.metadata('gb_used', util.gb_used())
     sys.stdout.flush()
     f.flush()
Exemple #2
0
    def control(self, experiment):
        if experiment.epochs >= self.max_epochs:
            print 'Halted after reaching max epochs.'
            experiment.halt = True

        if experiment.steps % self.report_wait == 0:
            print 'steps: {}, epochs: {:.2f}'.format(experiment.steps,
                                                     experiment.epochs)
            util.metadata('steps', experiment.steps, self.path)
            util.metadata('epochs', experiment.epochs, self.path)

            # report last seen
            time_rep = datetime.now().strftime('%H:%M:%S %m/%d')
            util.metadata('last_seen', time_rep, self.path)

            # report memory used
            util.metadata('gb_used', util.gb_used(), self.path)

        if experiment.steps % self.save_wait == 0 and experiment.steps != 0:
            print 'saving params...'
            experiment.model.save_model(self.path)
    def control(self, maximizer):
        if maximizer.steps >= self.max_steps:
            print 'Halted after reaching max steps.'
            maximizer.halt = True

        if maximizer.steps % self.report_wait == 0:
            epochs = float(maximizer.steps * maximizer.batch_size) / len(maximizer.train)
            print 'steps: {}, epochs: {:.2f}'.format(maximizer.steps, epochs)
            util.metadata('steps', maximizer.steps)
            util.metadata('epochs', epochs)

            # report last seen
            time_rep = datetime.now().strftime('%H:%M:%S %m/%d')
            util.metadata('last_seen', time_rep)

            # report memory used
            util.metadata('gb_used', util.gb_used())

        if maximizer.steps % self.save_wait == 0 and maximizer.steps != 0:
            print 'saving params...'
            with open('params.cpkl', 'w') as f:
                # convert params to picklable format
                params = SparseVector(maximizer.params.as_dict())
                pickle.dump(params, f)
    def control(self, maximizer):
        if maximizer.steps >= self.max_steps:
            print "Halted after reaching max steps."
            maximizer.halt = True

        if maximizer.steps % self.report_wait == 0:
            epochs = float(maximizer.steps * maximizer.batch_size) / len(maximizer.train)
            print "steps: {}, epochs: {:.2f}".format(maximizer.steps, epochs)
            util.metadata("steps", maximizer.steps)
            util.metadata("epochs", epochs)

            # report last seen
            time_rep = datetime.now().strftime("%H:%M:%S %m/%d")
            util.metadata("last_seen", time_rep)

            # report memory used
            util.metadata("gb_used", util.gb_used())

        if maximizer.steps % self.save_wait == 0 and maximizer.steps != 0:
            print "saving params..."
            with open("params.cpkl", "w") as f:
                # convert params to picklable format
                params = SparseVector(maximizer.params.as_dict())
                pickle.dump(params, f)
 def progress(steps, elapsed):
     print '{} of {} processed ({} s)'.format(steps, len(queries), elapsed)
     util.metadata('steps', steps)
     util.metadata('gb_used', util.gb_used())
     sys.stdout.flush()
     f.flush()