def predictFuture(m1,m2,old_pred,writeToFile=False): actual,latest_p = util.getCurrentData(label=True) actual = np.array(util.reduceCurrent(actual)).reshape(1,12) pred = util.augmentValue(net.predict(actual)[0],m1,m2) pred = float(int(pred[0]*100)/100) if writeToFile: f = open("results","a") f.write("[{}] Actual:{}$ Last Prediction:{}$ Next 9m:{}$\n".format(time.strftime("%H:%M:%S"),latest_p,old_pred,pred)) f.close() print("[{}] Actual:{}$ Last Prediction:{}$ Next 9m:{}$".format(time.strftime("%H:%M:%S"),latest_p,old_pred,pred)) return latest_p,pred
def predictFuture(m1,m2,old_pred,writeToFile=False): actual,latest_p = util.getCurrentData(label=True) actual = np.array(util.reduceCurrent(actual)).reshape(1,12) pred = util.augmentValue(net.predict(actual)[0],m1,m2) pred = float(int(pred[0]*100)/100) cex = util.getCEXData() slope,nrmse = predict.getslope(False) if writeToFile: f = open("results","a") f.write("[{}] Actual:{}$ Last Prediction:{}$ Next {}sec:{}$\n".format(time.strftime("%H:%M:%S"),latest_p,old_pred,wait_time,pred)) f.close() c = conn.cursor() c.execute("INSERT INTO predict(actual,last,target,cex_ask,slope,nrmse) VALUES (?,?,?,?,?,?)",(latest_p,old_pred,pred,cex["ask"],slope,nrmse)) conn.commit() print("[{}] Actual:{}$ Last Prediction:{}$ Next {}sec:{}$ Slope:{}$ NRMSE:{}$\n".format(time.strftime("%H:%M:%S"),latest_p,old_pred,wait_time,pred,slope,nrmse)) return latest_p,pred
def predictFuture(m1, m2, old_pred, window_data, prev_closep, writeToFile=False): actual, latest_p, ctime = util.getCurrentData(label=True) if net_type == 'RNN': actual = np.array(util.reduceCurrent(actual)).reshape(1, 12) pred = util.augmentValue(net.predict(actual)[0], m1, m2) pred = float(int(pred[0] * 100) / 100) if writeToFile: f = open("results", "a") f.write("[{}] Actual:{}$ Last Prediction:{}$ Next 9m:{}$\n".format( time.strftime("%H:%M:%S"), latest_p, old_pred, pred)) f.close() print("[{}] Actual:{}$ Last Prediction:{}$ Next 9m:{}$".format( time.strftime("%H:%M:%S"), latest_p, old_pred, pred)) return latest_p, pred, 0, 0, ctime else: for i in xrange(1, len(window_data)): window_data[i - 1][:] = window_data[i][:] window_data[len(window_data) - 1][:] = actual actual = np.array(window_data).reshape(1, window, 12) pred = (net.predict(actual)[0]) real = util.convert_close_to_label(prev_closep, latest_p) if writeToFile: f = open("results", "a") f.write( "[{}] Actual:{}$, Last actual value {}, Last Prediction:{}$ Next 9m:{}\n" .format(time.strftime("%H:%M:%S"), latest_p, prev_closep, old_pred, np.argmax(pred))) f.close() print( "[{}] Actual:{}$, Last actual value {}, Last Prediction:{}$ Next 9m:{}" .format(time.strftime("%H:%M:%S"), latest_p, prev_closep, old_pred, label[np.argmax(pred)])) return np.argmax(real), np.argmax(pred), window_data, latest_p, ctime