def generate(config, formats): for format in formats: for scenario in config["scenarios"]: # dict only has one item for (scenario_name, _) in scenario.items(): pass args = [""] if format in config["generator_optional_arguments"]: for optional_argument in config["generator_optional_arguments"][format]: args.append("-" + optional_argument) for arg in args: path = "./hu.bme.mit.trainbenchmark.generator.{FORMAT}/".format(FORMAT=format) util.set_working_directory(path) target = util.get_generator_jar(format) for size in config["sizes"]: cmd = flatten(["java", config["java_opts"], "-jar", target, "-scenario", scenario_name, "-size", str(size), arg]) try: subprocess.check_call(cmd) except subprocess.CalledProcessError: print("An error occured during model generation, skipping larger sizes for this scenario/format.") break util.set_working_directory("..")
def generate(conf): """Generates the models. """ target = util.get_generator_jar() for size in conf.sizes: subprocess.check_call( flatten(["java", conf.vmargs, "-jar", target, "-size", str(size)]))
def generate(formats, scenarios, sizes): """ Generates the models after the configurations parameter. """ for scenario in scenarios: for format in formats: path = "./hu.bme.mit.trainbenchmark.generator.{FORMAT}/".format(FORMAT=format) util.set_working_directory(path) target = util.get_generator_jar(format) for size in sizes: print("Generate model: <format: " + format + ", scenario: " + scenario + ", size: " + str(size) + ">") subprocess.call(["java", "-Xmx" + java_xmx, "-jar", target, "-scenario", scenario, "-size", str(size)]) util.set_working_directory("..")
def generate(formats, scenarios, sizes): """ Generates the models after the configurations parameter. """ for scenario in scenarios: for format in formats: path = "./hu.bme.mit.trainbenchmark.generator.{FORMAT}/".format( FORMAT=format) util.set_working_directory(path) target = util.get_generator_jar(format) for size in sizes: print("Generate model: <format: " + format + ", scenario: " + scenario + ", size: " + str(size) + ">") subprocess.call([ "java", "-Xmx" + java_xmx, "-jar", target, "-scenario", scenario, "-size", str(size) ]) util.set_working_directory("..")
import util if __name__ == "__main__": with open("config/config.yml", 'r') as stream: config = yaml.load(stream) formats = ["emf", "graph", "rdf", "sql"] for format in formats: for query in config["queries"]: args = [""] if format in config["generator_optional_arguments"]: for optional_argument in config["generator_optional_arguments"][format]: args.append("-" + optional_argument) for arg in args: path = "./hu.bme.mit.trainbenchmark.generator.{FORMAT}/".format(FORMAT=format) util.set_working_directory(path) target = util.get_generator_jar(format) cmd = ["java", "-Xmx" + config["java_opts"]["xmx"], "-jar", target, "-scenario", "Minimal", "-query", query, arg] try: subprocess.check_call(cmd) except subprocess.CalledProcessError: print("An error occured during model generation.") util.set_working_directory("..")
def generate(conf): """Generates the models. """ target = util.get_generator_jar() for size in conf.sizes: subprocess.check_call(flatten(["java", conf.vmargs, "-jar", target, "-size", str(size)]))