def process2(folder): """ Post process data Delta""" print(folder) util.setup(folder) params = ['Delta_qol', 'Delta_qol2', 'Delta_mobility', 'Delta_selfcare', 'Delta_activity', 'Delta_pain', 'Delta_anixety', 'Delta_kps'] image_ids = find_images() result = util.post_calculations(image_ids) print(len(result['all'])) util.avg_calculation(result['all'], 'all_N=112', None, True, folder, save_sum=True) util.avg_calculation(result['img'], 'img_N=112', None, True, folder) print("\n\n\n\n\n") for qol_param in params: if qol_param == "Delta_qol2": (image_ids_with_qol, qol) = util.get_qol(image_ids, "Delta_qol") qol = [-1 if _temp <= -0.15 else 0 if _temp < 0.15 else 1 for _temp in qol] else: (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param) qol = [_temp * 100 for _temp in qol] default_value = -300 print(qol_param, len(qol)) result = util.post_calculations(image_ids_with_qol) for label in result: if label == 'img': continue print(label) # util.avg_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value) util.median_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
def process3(folder): """ Post process data """ print(folder) util.setup(folder) params = ['Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety', 'karnofsky', 'Index_value'] image_ids = find_images() result = util.post_calculations(image_ids) print(len(result['all'])) # util.avg_calculation(result['all'], 'all_N=112', None, True, folder, save_sum=True) # util.avg_calculation(result['img'], 'img_N=112', None, True, folder) for qol_param in params: if qol_param == "Delta_qol2": (image_ids_with_qol, qol) = util.get_qol(image_ids, "Delta_qol") qol = [-1 if _temp <= -0.15 else 0 if _temp < 0.15 else 1 for _temp in qol] else: (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param) if qol_param not in ["karnofsky", "Delta_kps"]: qol = [_temp * 100 for _temp in qol] default_value = -100 print(qol_param) print(len(qol)) result = util.post_calculations(image_ids_with_qol) for label in result: if label == 'img': continue print(label) util.avg_calculation(result[label], label + '_' + qol_param + '_N=112', qol, True, folder, default_value=default_value) util.median_calculation(result[label], label + '_' + qol_param + '_N=112', qol, True, folder, default_value=default_value)
def process(folder): """ Post process data distribution and baseline""" print(folder) util.setup(folder) params = ['Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety', 'karnofsky', 'Index_value'] image_ids = find_images_163() result = util.post_calculations(image_ids) print(len(result['all'])) util.avg_calculation(result['all'], 'all_N=163', None, True, folder, save_sum=True) util.avg_calculation(result['img'], 'img_N=163', None, True, folder) image_ids = do_img_registration_GBM.find_images() result = util.post_calculations(image_ids) print(len(result['all'])) util.avg_calculation(result['all'], 'all_N=170', None, True, folder, save_sum=True) util.avg_calculation(result['img'], 'img_N=170', None, True, folder) for qol_param in params: (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param) if qol_param not in ["karnofsky", "Delta_kps"]: qol = [_temp * 100 for _temp in qol] default_value = -100 print(qol_param) print(len(qol)) result = util.post_calculations(image_ids_with_qol) for label in result: if label == 'img': continue print(label) # util.avg_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value) util.median_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
def process_vlsm(folder, n_permutations): """ Post process vlsm data """ print(folder) util.setup(folder) image_ids = find_images() params = [ 'Index_value', 'karnofsky', 'Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety' ] alternative = [ 'less', 'less', 'greater', 'greater', 'greater', 'greater', 'greater' ] stat_func = [ util.brunner_munzel_test, util.mannwhitneyu_test, util.mannwhitneyu_test, util.mannwhitneyu_test, util.mannwhitneyu_test, util.mannwhitneyu_test, util.mannwhitneyu_test ] for (qol_param, stat_func_i, alternative_i) in zip(params, stat_func, alternative): (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param) result = util.post_calculations(image_ids_with_qol) for label in result: print(label) if label == 'img': continue util.vlsm(result[label], label + '_' + qol_param, stat_func_i, qol, folder, n_permutations=n_permutations, alternative=alternative_i)