print_summary_heading() for k in run_dict.keys(): values = extract_print_values(run_dict, k, trading_days) print_values(values) def backtest_main(): start_time = time() bt = Backtester(update_stats=False) run_dict = run_back_set(bt) trading_days = len(bt.backtest_trading_dates) print_summary(trading_days, run_dict) log('') log('Done.') calc_runtime(start_time, True) if __name__ == "__main__": log_fnm = "test" + get_current_day_and_time() + ".log" open_logfile(LOGPATH, log_fnm) if is_holiday() == True: log('Today is not a trading day!', True) log('', True) log('Done', True) else: backtest_main()
df.average = df.average / days # regions = df[df.average >= per_day_limit].region.values regions = [16 * a + b for a in range(7, 13) for b in range(7, 13)] dataset = dataset[dataset.region.isin(regions)] dataset = dataset[['createdAt', 'region', 'ride_count']] dataset = dataset[dataset.createdAt >= train_start_date] regions = dataset.region.unique() mean = dataset.ride_count.mean() std = dataset.ride_count.std() dataset = dataset.groupby('region', as_index=False) targets = pd.DataFrame() targets['createdAt'] = dataset.get_group(regions[0])['createdAt'] targets = pd.DataFrame() targets['createdAt'] = dataset.get_group(regions[0])['createdAt'] targets['is_holiday'] = targets.createdAt.apply(lambda x: util.is_holiday(x)) targets['is_holiday'] = (targets['is_holiday'] - targets['is_holiday'].min() ) / (targets['is_holiday'].max() - targets['is_holiday'].min()) # Set Day of week targets['weekdaynum'] = targets.createdAt.apply(datetime.datetime.weekday) targets['weekdaynum'] = (targets['weekdaynum'] - targets['weekdaynum'].min() ) / (targets['weekdaynum'].max() - targets['weekdaynum'].min()) # Set time interval number targets['timeslot'] = targets.createdAt.apply(lambda x: (x.hour * 2 + x.minute / 30)) targets['sin_time'] = targets.timeslot.apply( lambda x: math.sin(2 * math.pi * x / (24 * (60 / agg_interval)))) targets['cos_time'] = targets.timeslot.apply( lambda x: math.cos(2 * math.pi * x / (24 * (60 / agg_interval))))