Exemple #1
0
    def _fine_tuning(self):
        self.freeze_top_layers()

        self.model.compile(
            loss='categorical_crossentropy',
            optimizer=Adam(lr=1e-5),
            metrics=['accuracy'])
        self.model.summary()

        train_data = self.get_train_datagen(rotation_range=30., shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
        callbacks = self.get_callbacks(config.get_fine_tuned_weights_path(), patience=self.fine_tuning_patience)

        if util.is_keras2():
            self.model.fit_generator(
                train_data,
                steps_per_epoch=config.nb_train_samples / float(self.batch_size),
                epochs=self.nb_epoch,
                validation_data=self.get_validation_datagen(),
                validation_steps=config.nb_validation_samples / float(self.batch_size),
                callbacks=callbacks,
                class_weight=self.class_weight)
        else:
            self.model.fit_generator(
                train_data,
                samples_per_epoch=config.nb_train_samples,
                nb_epoch=self.nb_epoch,
                validation_data=self.get_validation_datagen(),
                nb_val_samples=config.nb_validation_samples,
                callbacks=callbacks,
                class_weight=self.class_weight)

        self.model.save(config.get_model_path())
Exemple #2
0
    def _fine_tuning(self):
        self.freeze_top_layers()

        self.model.compile(
            loss='categorical_crossentropy',
            optimizer=Adam(lr=1e-5),
            metrics=['accuracy'])
        self.model.summary()
        # save the model to png in order to visualize
        plot_model(self.model, to_file='model1.png', show_shapes=True)
        train_data = self.get_train_datagen(rotation_range=30., shear_range=0.2, zoom_range=0.2, horizontal_flip=True,
                                            preprocessing_function=self.preprocess_input)
        # early stopping
        callbacks = self.get_callbacks(config.get_fine_tuned_weights_path(), patience=self.fine_tuning_patience)

        if util.is_keras2():
            self.model.fit_generator(
                train_data,
                steps_per_epoch=config.nb_train_samples / float(self.batch_size),
                epochs=self.nb_epoch,
                validation_data=self.get_validation_datagen(),
                validation_steps=config.nb_validation_samples / float(self.batch_size),
                callbacks=callbacks,
                class_weight=self.class_weight)
        else:
            self.model.fit_generator(
                train_data,
                samples_per_epoch=config.nb_train_samples,
                nb_epoch=self.nb_epoch,
                validation_data=self.get_validation_datagen(),
                nb_val_samples=config.nb_validation_samples,
                callbacks=callbacks,
                class_weight=self.class_weight)

        self.model.save(config.get_model_path())
Exemple #3
0
    def _fine_tuning(self):
        self.freeze_top_layers()

        self.model.compile(
            loss='binary_crossentropy',
            optimizer=Adam(lr=1e-5),
            #optimizer=SGD(lr=5e-6, momentum=0.9),
            metrics=['binary_accuracy'])

        train_data = self.get_train_datagen(
            rescale=1. / 255,
            rotation_range=60.,
            #shear_range=0.2,
            #zoom_range=0.2,
            width_shift_range=0.2,
            height_shift_range=0.2,
            horizontal_flip=True,
            vertical_flip=True)
        callbacks = self.get_callbacks(config.get_fine_tuned_weights_path(),
                                       patience=self.fine_tuning_patience)

        if util.is_keras2():
            hist = self.model.fit_generator(
                train_data,
                steps_per_epoch=config.nb_train_samples /
                float(self.batch_size),
                epochs=self.nb_epoch,
                validation_data=self.get_validation_datagen(rescale=1. / 255),
                #validation_data=self.get_validation_datagen(),
                validation_steps=config.nb_validation_samples /
                float(self.batch_size),
                callbacks=callbacks,
                class_weight=self.class_weight)
        else:
            hist = self.model.fit_generator(
                train_data,
                samples_per_epoch=config.nb_train_samples,
                nb_epoch=self.nb_epoch,
                validation_data=self.get_validation_datagen(),
                nb_val_samples=config.nb_validation_samples,
                callbacks=callbacks,
                class_weight=self.class_weight)
        print(hist.history)
        util.save_history(history=hist, prefix=time.time())
        self.model.save(config.get_model_path())
Exemple #4
0
    def _fine_tuning(self):
        self.freeze_top_layers1()
        train_data = self.get_train_datagen(
            rotation_range=30.,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True,
            preprocessing_function=self.preprocess_input)
        checkpoint_dir = os.path.join(os.path.abspath('.'), 'checkpoint')
        callbacks = self.get_callbacks(config.get_fine_tuned_weights_path(),
                                       checkpoint_dir,
                                       patience=self.fine_tuning_patience)

        if util.is_keras2():
            if config.isCenterLoss:
                self.center_model.load_weights(
                    '/home/yuzhg/Inception-v3/trained/fine-tuned-best-inception-weights.h5',
                    by_name=True)
                self.center_model.compile(loss=[
                    'categorical_crossentropy', lambda y_true, y_pred: y_pred
                ],
                                          loss_weights=[1, 0.2],
                                          metrics=['accuracy'],
                                          optimizer=Adam(lr=1e-5))
                self.center_model.summary()
                self.history = self.center_model.fit_generator(
                    util.clone_y_generator(train_data),
                    steps_per_epoch=config.nb_train_samples /
                    float(self.batch_size),
                    epochs=self.nb_epoch,
                    validation_data=util.clone_y_generator(
                        self.get_validation_datagen()),
                    validation_steps=config.nb_validation_samples /
                    float(self.batch_size),
                    callbacks=callbacks,
                    class_weight=self.class_weight)
            elif config.isTripletLoss:
                self.triplet_model.load_weights(
                    '/home/yuzhg/Inception-v3/trained/fine-tuned-best-inception-weights.h5',
                    by_name=True)
                #self.triplet_model.compile(loss=self.hard_triplet_loss, optimizer=Adam(lr=1e-5), metrics=['accuracy'])
                self.triplet_model.compile(
                    optimizer=Adam(lr=1e-5),
                    loss=['categorical_crossentropy', self.hard_triplet_loss],
                    loss_weights=[1.0, 1.0],
                    metrics=['accuracy'])
                self.triplet_model.summary()
                valid_data = self.get_validation_datagen(
                    rotation_range=30.,
                    shear_range=0.2,
                    zoom_range=0.2,
                    horizontal_flip=True,
                    preprocessing_function=self.preprocess_input)

                # util.clone_y_generator1(train_data),
                self.history = self.triplet_model.fit_generator(
                    #util.triplet_transformed_generator(train_data, 4096),
                    util.clone_y_generator1(train_data),
                    steps_per_epoch=config.nb_train_samples /
                    float(self.batch_size),
                    epochs=self.nb_epoch,
                    #validation_data=util.triplet_transformed_generator(valid_data, 4096),
                    validation_data=util.clone_y_generator1(valid_data),
                    validation_steps=config.nb_validation_samples /
                    float(self.batch_size),
                    callbacks=callbacks,
                    class_weight=self.class_weight)
            else:
                self.model.load_weights(
                    '/home/yuzhg/Inception-v3/trained/fine-tuned-best-inception-weights.h5',
                    by_name=True)
                self.model.compile(loss='categorical_crossentropy',
                                   optimizer=Adam(lr=1e-5),
                                   metrics=['accuracy'])

                self.model.summary()
                self.history = self.model.fit_generator(
                    train_data,
                    steps_per_epoch=config.nb_train_samples /
                    float(self.batch_size),
                    epochs=self.nb_epoch,
                    validation_data=self.get_validation_datagen(
                        rotation_range=30.,
                        shear_range=0.2,
                        zoom_range=0.2,
                        horizontal_flip=True,
                        preprocessing_function=self.preprocess_input),
                    validation_steps=config.nb_validation_samples /
                    float(self.batch_size),
                    callbacks=callbacks,
                    class_weight=self.class_weight)

        # else:
        #     if config.isCenterLoss:
        #         self.center_model.compile(loss=['categorical_crossentropy', lambda y_true, y_pred:y_pred],
        #                            loss_weights=[1, 0.2], metrics=['accuracy'],
        #                            optimizer=Adam(lr=1e-5))
        #         self.center_model.summary()
        #         self.history = self.center_model.fit_generator(
        #             util.clone_y_generator(train_data),
        #             samples_per_epoch=config.nb_train_samples,
        #             nb_epoch=self.nb_epoch,
        #             validation_data=util.clone_y_generator(self.get_validation_datagen()),
        #             nb_val_samples=config.nb_validation_samples,
        #             callbacks=callbacks,
        #             class_weight=self.class_weight)
        #     elif config.isTripletLoss:
        #         self.triplet_model.compile(loss=triplet_loss, optimizer=Adam(lr=1e-5))
        #         self.triplet_model.summary()
        #         self.history = self.triplet_model.fit_generator(
        #             util.clone_y_generator(train_data),
        #             steps_per_epoch=config.nb_train_samples / float(self.batch_size),
        #             epochs=self.nb_epoch,
        #             validation_data=util.clone_y_generator(self.get_validation_datagen()),
        #             validation_steps=config.nb_validation_samples / float(self.batch_size),
        #             callbacks=callbacks,
        #             class_weight=self.class_weight
        #         )
        #     else:
        #         self.model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-5), metrics=['accuracy'])
        #         self.model.summary()
        #         self.history = self.model.fit_generator(
        #             train_data,
        #             steps_per_epoch=config.nb_train_samples / float(self.batch_size),
        #             epochs=self.nb_epoch,
        #             validation_data=self.get_validation_datagen(),
        #             validation_steps=config.nb_validation_samples / float(self.batch_size),
        #             callbacks=callbacks,
        #             class_weight=self.class_weight
        #         )

        if config.isCenterLoss:
            #self.center_model.save_weights('vgg16-model-weights.h5')
            self.center_model.save(config.get_model_path())
            util.save_history(self.history, self.center_model)
        elif config.isTripletLoss:
            self.triplet_model.save(config.get_model_path())
            util.save_history(self.history, self.triplet_model)
        else:
            self.model.save(config.get_model_path())
            util.save_history(self.history, self.model)