def get_the_iter_accucy(max_true_vale=70, model="model/GNB.model", iter_times=3): try: if iter_times > 0: print "left " + str(iter_times) + " iteration" a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) gnb = GaussianNB() gnb.fit(X, y) testX, testY = load_data_X_Y('test') true_ans = 0 for itemX in range(len(testX)): predict_result = gnb.predict(testX[itemX]) vote_vale = vote_the_max_times(predict_result) if vote_vale == testY[itemX]: true_ans += 1 true_ans_percent = true_ans * 100 / len(testX) print true_ans_percent if true_ans_percent > max_true_vale: print "good job, the new record:" joblib.dump(gnb, model) print "update the model" else: true_ans_percent = max_true_vale get_the_iter_accucy(true_ans_percent, model, iter_times - 1) except ValueError: pass return 0
def get_accucy(model="model/GB/GB.model"): try: clf = joblib.load(model) print 'load GB model successfully' except IOError: print 'GB model file doesnt exist, Train first' a, b = load_data_X_Y('train') # X, y = shuffle_two_list_X_Y(a, b) X, y = a, b #clf = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) clf.fit(X, y) joblib.dump(clf, "model/GB/GB.model") print "update the model" testX, testY = load_data_X_Y('test') true_ans = 0 for itemX in range(len(testX)): predict_result = clf.predict(testX[itemX]) vote_vale = vote_the_max_times(predict_result) if vote_vale == testY[itemX]: true_ans += 1 true_ans_percent = true_ans * 100 / len(testX) return true_ans_percent # get_the_iter_accucy() # print get_accucy()
def get_accucy(model="model/GNB.model"): try: gnb = joblib.load(model) print 'load GNBClassifier successfully' except IOError, ValueError: print 'GNB classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) gnb = GaussianNB() gnb.fit(X, y)
def get_accucy(model="model/DT.model"): try: dt = joblib.load(model) print 'load DTClassifier successfully' except IOError, ValueError: print 'DT classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) dt = DecisionTreeClassifier() dt.fit(X, y)
def get_accucy(model="model/SGD.model"): try: sgd = joblib.load(model) print 'load SGDClassifier successfully' except IOError: print 'SGD classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) sgd = SGDClassifier(loss="hinge", penalty="l2", n_iter=10000) sgd.fit(X, y) testX, testY = load_data_X_Y('test') true_ans = 0 for itemX in range(len(testX)): predict_result = sgd.predict(testX[itemX]) vote_vale = vote_the_max_times(predict_result) if vote_vale == testY[itemX]: true_ans += 1 true_ans_percent = true_ans * 100 / len(testX) return true_ans_percent
def get_the_iter_accucy(max_true_vale=76, model="model/GB/GB.model", iter_times=1): try: if iter_times > 0: print "left " + str(iter_times) + " iteration" a, b = load_data_X_Y('train') # X, y = shuffle_two_list_X_Y(a, b) X, y = a, b #clf = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) clf.fit(X, y) joblib.dump(clf, "model/GB/GB.model") print "update the model" testX, testY = load_data_X_Y('test') true_ans = 0 for itemX in range(len(testX)): predict_result = clf.predict(testX[itemX]) vote_vale = vote_the_max_times(predict_result) if vote_vale == testY[itemX]: true_ans += 1 true_ans_percent = true_ans * 100 / len(testX) print true_ans_percent if true_ans_percent > max_true_vale: print "good job, the new record:" joblib.dump(clf, model) print "update the model" else: true_ans_percent = max_true_vale get_the_iter_accucy(true_ans_percent, model, iter_times - 1) except ValueError: pass return 0
def start_calssification_SGD(wav): try: sgd = joblib.load('model/SGD.model') print 'load SGDClassifier successfully' except IOError: print 'SGD classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) sgd = SGDClassifier(loss="hinge", penalty="l2", n_iter=10000) sgd.fit(X, y) predict_result = sgd.predict(load_data_user_chose(wav)) vote_vale = vote_the_max_times(predict_result) speaker_name = get_speaker_name(vote_vale) return speaker_name
def start_calssification_GNB(wav): try: gnb = joblib.load('model/GNB.model') print 'load GNBClassifier successfully' except IOError: print 'GNB classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) gnb = GaussianNB() gnb.fit(X, y) joblib.dump(gnb, 'model/GNB.model') print "update the model" predict_result = gnb.predict(load_data_user_chose(wav)) vote_vale = vote_the_max_times(predict_result) speaker_name = get_speaker_name(vote_vale) return speaker_name
def start_calssification_DT(wav): try: dt = joblib.load('model/DT.model') print 'load DTClassifier successfully' except IOError: print 'DT classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) dt = DecisionTreeClassifier() dt.fit(X, y) joblib.dump(dt, 'model/DT.model') print "update the model" predict_result = dt.predict(load_data_user_chose(wav)) vote_vale = vote_the_max_times(predict_result) speaker_name = get_speaker_name(vote_vale) return speaker_name
def start_GradientBoostingClassifier(wav): try: clf = joblib.load('model/GB/GB.model') print 'load GB model successfully' except IOError: print 'GB model file doesnt exist, Train first' a, b = load_data_X_Y('train') # X, y = shuffle_two_list_X_Y(a, b) X, y = a, b #clf = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) clf.fit(X, y) joblib.dump(clf, "model/GB/GB.model") print "update the model" predict_result = clf.predict(load_data_user_chose(wav)) vote_vale = vote_the_max_times(predict_result) speaker_name = get_speaker_name(vote_vale) return speaker_name
pass return 0 def get_accucy(model="model/GNB.model"): try: gnb = joblib.load(model) print 'load GNBClassifier successfully' except IOError, ValueError: print 'GNB classifer file doesnt exist, Train first' a, b = load_data_X_Y('train') X, y = shuffle_two_list_X_Y(a, b) gnb = GaussianNB() gnb.fit(X, y) testX, testY = load_data_X_Y('test') true_ans = 0 for itemX in range(len(testX)): predict_result = gnb.predict(testX[itemX]) vote_vale = vote_the_max_times(predict_result) if vote_vale == testY[itemX]: true_ans += 1 true_ans_percent = true_ans * 100 / len(testX) return true_ans_percent # get_the_iter_accucy() # print get_accucy()
#clf = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) clf.fit(X, y) joblib.dump(clf, "model/GB/GB.model") print "update the model" predict_result = clf.predict(load_data_user_chose(wav)) vote_vale = vote_the_max_times(predict_result) speaker_name = get_speaker_name(vote_vale) return speaker_name test1, test2 = load_data_X_Y('train') # print start_calssification_SGD() def get_the_iter_accucy(max_true_vale=76, model="model/GB/GB.model", iter_times=1): try: if iter_times > 0: print "left " + str(iter_times) + " iteration" a, b = load_data_X_Y('train') # X, y = shuffle_two_list_X_Y(a, b) X, y = a, b #clf = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,