Exemple #1
0
    def interpret_data(self, args):
        if 'error' in args:
            debug('Error: ' + args['error'])
            return

        if 'number' in args:
            self.my_number = args['number']
            
        if 'board' in args:
            self.dimension = args['board']['dimension']
            self.turn = args['turn']
            self.grid = args['board']['grid']
            self.all_blocks = args['blocks'][:]
            
            self.bonus_squares = {tuple(coords) for coords in args['board']['bonus_squares']}

        for x in xrange(len(self.all_blocks)):
            for y in xrange(len(self.all_blocks[x])):
                self.all_blocks[x][y] = [Point(offset) for offset in self.all_blocks[x][y]]
                
                self.all_blocks[x][y][0].x * 9000
                self.all_blocks[x][y][0].y * 9001
                
        if (('move' in args) and (args['move'] == 1)):
            send_command(" ".join(str(x) for x in util.run_search_function(self, util.memoize(self.find_move))))
Exemple #2
0
def best_first_graph_search(problem, f):
    """
    Search the nodes with the lowest f scores first.
    You specify the function f(node) that you want to minimize; for example,
    if f is a heuristic estimate to the goal, then we have greedy best
    first search; if f is node.depth then we have breadth-first search.
    There is a subtlety: the line "f = memoize(f, 'f')" means that the f
    values will be cached on the nodes as they are computed. So after doing
    a best first search you can examine the f values of the path returned.
  """

    f = memoize(f, 'f')
    node = Node(problem.getStartState())
    if problem.isGoalState(node.state):
        return node

    frontier = PriorityQueue(min, f)
    frontier.push(node)
    explored = set()
    while frontier:
        node = frontier.pop()
        if problem.isGoalState(node.state):
            return node
        explored.add(node.state)
        for child in node.expand(problem):
            if child.state not in explored and not frontier.contains(child):
                frontier.push(child)
            elif frontier.contains(child):
                incumbent = frontier.__getitem__(child)
                if f(child) < f(incumbent):
                    del frontier[incumbent]
                    frontier.push(child)
    return None
Exemple #3
0
        val = -1 * alphabeta_find_board_value(
            alpha, beta, False, new_board, current_moves, repetitive_moves,
            depth - 1, eval_fn, get_next_moves_fn, is_terminal_fn)
        #print("This is val: ", val, "move  ", move)
        if best_val is None or val > best_val[0]:
            best_val = (val, move, new_board)
    #test = list(filter(lambda x: len(x) > 1, board.chain_cells(2)))
    #print(test)
    print("MINIMAX_alphabeta: Decided on column {} with rating {}".format(
        best_val[1], best_val[0]))
    return best_val[1]


# Now you should be able to search twice as deep in the same amount of time.
# (Of course, this alpha-beta-player won't work until you've defined alpha_beta_search.)
focused_evaluate = memoize(focused_evaluate)


def alpha_beta_player(board):
    return alpha_beta_search(board, depth=8, eval_fn=focused_evaluate)


# This player uses progressive deepening, so it can kick your ass while
# making efficient use of time:
def ab_iterative_player(board):
    return run_search_function(board,
                               search_fn=alpha_beta_search,
                               eval_fn=focused_evaluate,
                               timeout=5)

Exemple #4
0
        sec_info.append((1, None))
        sec_info.sort()

    def get_section(self, addr):
        key = (-addr, )
        idx = bisect.bisect(self._sec_info, key)
        _, sec = self._sec_info[idx]
        if not sec:
            return

        if addr - sec.header.sh_addr >= sec.header.sh_size:
            return
        return sec


get_address_space = memoize(WeakKeyDictionary)(AddressSpace)


class MemoryStream(object):
    def __init__(self, elf):
        self.elf = elf
        self._address_space = get_address_space(elf)

    def seek(self, addr):
        self._addr = addr

    def tell(self):
        return self._addr

    def _read(self, size):
        assert size >= 0
Exemple #5
0
        for point in chain:
            score -= 5 * abs(
                3 - point[1]
            )  # scale to 5, place in center ones have more chance to win
    for chain in board.chain_cells(board.get_other_player_id()):
        score -= len(chain) * len(chain) * len(
            chain)  # because defense is more important
        for point in chain:
            score += 7 * abs(
                3 - point[1]
            )  # scale to 5, place in center ones have more chance to win
    return score
    #raise NotImplementedError


# Comment this line after you've fully implemented better_evaluate
#better_evaluate = memoize(basic_evaluate)

# Uncomment this line to make your better_evaluate run faster.
better_evaluate = memoize(better_evaluate)

# A player that uses alpha-beta and better_evaluate:
#def my_player(board):
#    return run_search_function(board, search_fn=alpha_beta_search, eval_fn=better_evaluate, timeout=5)

# NOTE:
# set the depth to be 6, at the beginning of each game, it might be slow, take about 5-6s, but will be much
#   faster as the process of the game.
my_player = lambda board: alpha_beta_search(
    board, depth=6, eval_fn=better_evaluate)
Exemple #6
0
from logging import getLogger
from itertools import chain

from flask import Blueprint, render_template, abort, request, Response, \
    current_app, url_for
from werkzeug.routing import BuildError
import opensearch

from util import memoize, requestedFormat

log = getLogger('agherant')
agherant = Blueprint('agherant', __name__)
Client = memoize(opensearch.Client)


@agherant.route('/search')
def search():
    query = request.args.get('q', None)
    if query is None:
        abort(400, "No query given")
    books = aggregate(current_app.config['AGHERANT_DESCRIPTIONS'], query)
    format = requestedFormat(request,
                             ['text/html',
                              'text/xml',
                              'application/rss+xml',
                              'opensearch'])
    if (not format) or (format is 'text/html'):
        return render_template('os_search.html', books=books, query=query)
    if format in ['opensearch', 'text/xml', 'application/rss+xml']:
        return Response(render_template('os_opens.xml', books=books,
                                        query=query),
Exemple #7
0
                                 if board.get_cell(r, c_i) == other_player]),

                            # 2. Vertical chains (r, c), (r+1, c), ...
                            #sum([1 for r_i in xrange(r, r+3)
                            sum([1 for r_i in xrange(r, r+k-1)
                                 if board.get_cell(r_i, c) == other_player]),
    
                            # 3. Diagonal chains (r, c), (r+1, c+1), ...
                            #sum([1 for d_i in xrange(3)
                            sum([1 for d_i in xrange(k-1)
                                 if board.get_cell(r+d_i, c+d_i) == other_player])
                        ) ** 2

    return score

new_evaluate = memoize(new_evaluate)

def get_all_next_moves(board):
    """ Return a generator of all moves that the current player could take from this position """
    from connectfour import InvalidMoveException

    for i in xrange(board.board_width):
        try:
            yield (i, board.do_move(i))
        except InvalidMoveException:
            pass

def is_terminal(depth, board):
    """
    Generic terminal state check, true when maximum depth is reached or
    the game has ended.
Exemple #8
0
    def _iter_cu_dios(self, cu):
        for die, parent_pos in _iter_DIEs(cu):
            yield DebugInfoObject(self, die, parent_pos)

    def iter_dios(self):
        # Skip sentinel (1, None) at position zero
        for cu_pos, cu in itertools.islice(reversed(self._cu_pos), 1, None):
            for dio in self._iter_cu_dios(cu):
                yield dio

    def lookup(self, cu_name):
        cu = self._cu_names.get(cu_name)
        return DebugInfoObject(self, cu.get_top_DIE(), DI_ROOT) if cu else None


get_debug_info = memoize(WeakKeyDictionary)(DebugInfo)


class Struct(object):
    def __init__(self, **kwargs):
        for name, value in kwargs.iteritems():
            setattr(self, name, value)

    def __repr__(self):
        data = [
            "%s = %r" % (name, value)
            for name, value in self.__dict__.iteritems()
            if not name.startswith("__")
        ]
        data.sort()
        return "Struct(%s)" % ", ".join(data)
Exemple #9
0
from logging import getLogger
from itertools import chain

from flask import Blueprint, render_template, abort, request, Response, \
    current_app, url_for
from werkzeug.routing import BuildError
import opensearch

from util import memoize, requestedFormat

log = getLogger('agherant')
agherant = Blueprint('agherant', __name__)
Client = memoize(opensearch.Client)


@agherant.route('/search')
def search():
    query = request.args.get('q', None)
    if query is None:
        abort(400, "No query given")
    books = aggregate(current_app.config['AGHERANT_DESCRIPTIONS'], query)
    format = requestedFormat(
        request,
        ['text/html', 'text/xml', 'application/rss+xml', 'opensearch'])
    if (not format) or (format is 'text/html'):
        return render_template('os_search.html', books=books, query=query)
    if format in ['opensearch', 'text/xml', 'application/rss+xml']:
        return Response(render_template('os_opens.xml',
                                        books=books,
                                        query=query),
                        mimetype='text/xml')