Exemple #1
0
    def logp_err(self, err, data_id=None):
        """
        Error is represemted as a normal. See BaseBackCalculator for more info

        :param err:
        :param data_id:
        """
        logp = normal_loglike(err, mu=0, sig=self.errSig_)
        return logp
Exemple #2
0
    def logp_err(self, err, data_id=None):
        """
        Error is represemted as a normal. See BaseBackCalculator for more info

        :param err:
        :param data_id:
        """
        logp = normal_loglike(err, mu=0, sig=self.errSig_)
        return logp
Exemple #3
0
    def logp_params(self, params):
        """
        Parameters are represented as normals. See BaseBackCalculator for more
        info

        :param params:
        :return:
        """
        logp = normal_loglike(params[0], mu=self.gmu_, sig=self.gstd_)
        return logp
Exemple #4
0
    def logp_params(self, params):
        """
        Parameters are represented as normals. See BaseBackCalculator for more
        info

        :param params:
        :return:
        """
        logp = normal_loglike(params[0], mu=self.gmu_, sig=self.gstd_)
        return logp
Exemple #5
0
    def calc_opt_params(self, n, beta_sig, sig_eps, exp_val):
        """
        Analytically calculate the optimal back-calculation error.
        For more info see BaseBackCalculator

        :param n: number of structures
        :param beta_sig: [sum of shift back calculations, std for this atom]
        :param sig_eps:
        :param exp_val:
        :return: optimal back calculator error in a list
        """
        beta = beta_sig[0] / n
        sig_bc = beta_sig[1]
        alpha = (sig_bc ** 2 / sig_eps ** 2)
        eps_back_opt = (alpha * (beta - exp_val)) / (1 + alpha)

        f = normal_loglike(eps_back_opt, mu=0, sig=sig_bc)
        exp_err = beta - exp_val - eps_back_opt
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return [eps_back_opt], f
Exemple #6
0
    def calc_opt_params(self, n, beta_sig, sig_eps, exp_val):
        """
        Analytically calculate the optimal back-calculation error.
        For more info see BaseBackCalculator

        :param n: number of structures
        :param beta_sig: [sum of shift back calculations, std for this atom]
        :param sig_eps:
        :param exp_val:
        :return: optimal back calculator error in a list
        """
        beta = beta_sig[0] / n
        sig_bc = beta_sig[1]
        alpha = (sig_bc**2 / sig_eps**2)
        eps_back_opt = (alpha * (beta - exp_val)) / (1 + alpha)

        f = normal_loglike(eps_back_opt, mu=0, sig=sig_bc)
        exp_err = beta - exp_val - eps_back_opt
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return [eps_back_opt], f
Exemple #7
0
    def logp_err(self, err, data_id):
        """
        Error represented as gaussian with std from get_err_sig
        See BaseBackCalculator for more info

        :param err:
        :param data_id:
        :return:
        """
        sig_err = self.get_err_sig(data_id)
        logp = normal_loglike(err, mu=0, sig=sig_err)
        return logp
Exemple #8
0
    def logp_err(self, err, data_id):
        """
        Error represented as gaussian with std from get_err_sig
        See BaseBackCalculator for more info

        :param err:
        :param data_id:
        :return:
        """
        sig_err = self.get_err_sig(data_id)
        logp = normal_loglike(err, mu=0, sig=sig_err)
        return logp
Exemple #9
0
    def logp_params(self, params):
        """
        Parameters are represented as normals. See BaseBackCalculator for more
        info

        :param params:
        :return:
        """
        logp = 0
        for i in range(self.nParams_):
            logp += normal_loglike(params[i], mu=self.muParams_[i],
                                   sig=self.sigParams_[i])
        return logp
Exemple #10
0
    def logp_params(self, params):
        """
        Parameters are represented as normals. See BaseBackCalculator for more
        info

        :param params:
        :return:
        """
        logp = 0
        for i in range(self.nParams_):
            logp += normal_loglike(params[i],
                                   mu=self.muParams_[i],
                                   sig=self.sigParams_[i])
        return logp
Exemple #11
0
    def calc_opt_params(self, n, alphas, sig_eps, exp_val):
        """
        Analytically calculate the optimal A, B and C in the Karplus equation.
        For more info see BaseBackCalculator
        :param n: number of structures
        :param alphas: pre-calculated sum over cosines of phi angles
        :param sig_eps:
        :param exp_val:
        :return: optimal A, B, C in a list
        """
        alpha1 = alphas[0]
        alpha2 = alphas[1]

        a = np.zeros((3, 3))
        b = np.zeros((3,))

        b[0] = ((self.muParams_[0] / self.sigParams_[0] ** 2) + (
            (exp_val * alpha2) / (n * sig_eps ** 2)))

        b[1] = ((self.muParams_[1] / self.sigParams_[1] ** 2) + (
            (exp_val * alpha1) / (n * sig_eps ** 2)))

        b[2] = ((self.muParams_[2] / self.sigParams_[2] ** 2) + (
            exp_val / (sig_eps ** 2)))

        a[0, 0] = (
            (1 / self.sigParams_[0] ** 2) + (
                alpha2 ** 2 / (sig_eps ** 2 * n ** 2)))
        a[1, 1] = (
            (1 / self.sigParams_[1] ** 2) + (
                alpha1 ** 2 / (sig_eps ** 2 * n ** 2)))
        a[2, 2] = ((1 / self.sigParams_[2] ** 2) + (1 / (sig_eps ** 2)))

        a[0, 1] = (1 / (sig_eps ** 2 * n ** 2)) * alpha2 * alpha1
        a[1, 0] = (1 / (sig_eps ** 2 * n ** 2)) * alpha2 * alpha1
        a[0, 2] = (alpha2 / (n * sig_eps ** 2))
        a[1, 2] = (alpha1 / (n * sig_eps ** 2))
        a[2, 0] = (alpha2 / (n * sig_eps ** 2))
        a[2, 1] = (alpha1 / (n * sig_eps ** 2))

        opt_params = solve_3_eqs(a, b)

        exp_err = exp_val - (opt_params[0] * alpha2 / n) - (
            opt_params[1] * alpha1 / n) - opt_params[2]

        f = self.logp_params(opt_params)
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return opt_params, f
Exemple #12
0
    def calc_opt_params(self, n, alphas, sig_eps, exp_val):
        """
        Analytically calculate the optimal A, B and C in the Karplus equation.
        For more info see BaseBackCalculator
        :param n: number of structures
        :param alphas: pre-calculated sum over cosines of phi angles
        :param sig_eps:
        :param exp_val:
        :return: optimal A, B, C in a list
        """
        alpha1 = alphas[0]
        alpha2 = alphas[1]

        a = np.zeros((3, 3))
        b = np.zeros((3, ))

        b[0] = ((self.muParams_[0] / self.sigParams_[0]**2) +
                ((exp_val * alpha2) / (n * sig_eps**2)))

        b[1] = ((self.muParams_[1] / self.sigParams_[1]**2) +
                ((exp_val * alpha1) / (n * sig_eps**2)))

        b[2] = ((self.muParams_[2] / self.sigParams_[2]**2) + (exp_val /
                                                               (sig_eps**2)))

        a[0, 0] = ((1 / self.sigParams_[0]**2) + (alpha2**2 /
                                                  (sig_eps**2 * n**2)))
        a[1, 1] = ((1 / self.sigParams_[1]**2) + (alpha1**2 /
                                                  (sig_eps**2 * n**2)))
        a[2, 2] = ((1 / self.sigParams_[2]**2) + (1 / (sig_eps**2)))

        a[0, 1] = (1 / (sig_eps**2 * n**2)) * alpha2 * alpha1
        a[1, 0] = (1 / (sig_eps**2 * n**2)) * alpha2 * alpha1
        a[0, 2] = (alpha2 / (n * sig_eps**2))
        a[1, 2] = (alpha1 / (n * sig_eps**2))
        a[2, 0] = (alpha2 / (n * sig_eps**2))
        a[2, 1] = (alpha1 / (n * sig_eps**2))

        opt_params = solve_3_eqs(a, b)

        exp_err = exp_val - (opt_params[0] * alpha2 /
                             n) - (opt_params[1] * alpha1 / n) - opt_params[2]

        f = self.logp_params(opt_params)
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return opt_params, f
Exemple #13
0
    def calc_opt_params(self, n, alpha, sig_eps, exp_val):
        """
        Analytically calculate the optimal gamma value
        For more info see BaseBackCalculator
        :param n: number of structures
        :param alpha: pre-calculated sum of r^-6 values
        :param sig_eps: experimental error
        :param exp_val: experimental data point
        :return: optimal gamma in a one-element list and the log likelihood of the result
        """
        alpha = alpha[0]
        num = n ** 3 * sig_eps ** 4 * self.gmu_
        num += n ** 2 * sig_eps ** 2 * self.gstd_ ** 2 * alpha * exp_val

        den = n ** 3 * sig_eps ** 4
        den += n * sig_eps ** 2 * self.gstd_ ** 2 * alpha ** 2

        opt_params = [num / den]
        exp_err = exp_val - ((opt_params[0] * alpha) / n)

        f = self.logp_params(opt_params)
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return opt_params, f
Exemple #14
0
    def calc_opt_params(self, n, alpha, sig_eps, exp_val):
        """
        Analytically calculate the optimal gamma value
        For more info see BaseBackCalculator
        :param n: number of structures
        :param alpha: pre-calculated sum of r^-6 values
        :param sig_eps: experimental error
        :param exp_val: experimental data point
        :return: optimal gamma in a one-element list and the log likelihood of the result
        """
        alpha = alpha[0]
        num = n**3 * sig_eps**4 * self.gmu_
        num += n**2 * sig_eps**2 * self.gstd_**2 * alpha * exp_val

        den = n**3 * sig_eps**4
        den += n * sig_eps**2 * self.gstd_**2 * alpha**2

        opt_params = [num / den]
        exp_err = exp_val - ((opt_params[0] * alpha) / n)

        f = self.logp_params(opt_params)
        f += normal_loglike(exp_err, mu=0, sig=sig_eps)
        return opt_params, f