def test3d(config): prepare_dirs_and_logger(config) tf.set_random_seed(config.random_seed) batch_manager = BatchManager(config) # batch test sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess_config.allow_soft_placement = True sess_config.log_device_placement = False sess = tf.Session(config=sess_config) batch_manager.start_thread(sess) x, y = batch_manager.batch() x_ = x.eval(session=sess) batch_manager.stop_thread() x_ = (x_ + 1) * 127.5 # [0, 255] x_ = np.mean(x_, axis=1) # yx save_image(x_, '{}/x_fixed.png'.format(config.model_dir)) # random pick from parameter space sample = batch_manager.random_list(config.batch_size) save_image(sample['xy'], '{}/xy.png'.format(config.model_dir)) save_image(sample['zy'], '{}/zy.png'.format(config.model_dir)) save_image(sample['xym'], '{}/xym.png'.format(config.model_dir)) save_image(sample['zym'], '{}/zym.png'.format(config.model_dir)) with open('{}/sample.txt'.format(config.model_dir), 'w') as f: f.write(str(sample['p'])) f.write(str(sample['z']))
def main(config): prepare_dirs_and_logger(config) batch_manager = BatchManager(config) # test sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess_config.allow_soft_placement = True sess_config.log_device_placement = False sess = tf.Session(config=sess_config) batch_manager.init_it(sess) x, y = batch_manager.batch() x_, y_ = sess.run([x, y]) print(x_.shape, y_.shape) x, y = batch_manager.batch(is_window=True) x_, y_ = sess.run([x, y]) print(x_.shape, y_.shape) batch_manager.init_test_it() x, y = batch_manager.test_batch() x_, y_ = sess.run([x, y]) print(x_.shape, y_.shape) x, y = batch_manager.test_batch(is_window=True) x_, y_ = sess.run([x, y]) print(x_.shape, y_.shape) print('batch manager test done')
def main(config): prepare_dirs_and_logger(config) tf.compat.v1.set_random_seed(config.random_seed) if 'nn' in config.arch: from data_nn import BatchManager else: from data import BatchManager batch_manager = BatchManager(config) if config.is_3d: trainer = Trainer3(config, batch_manager) else: trainer = Trainer(config, batch_manager) print("---------------------------------") print("| |") print("| |") print("| prepare trainer |") print("| is done |") print("| |") print("| |") print("---------------------------------") if config.is_train: save_config(config) trainer.train() else: if not config.load_path: raise Exception( "[!] You should specify `load_path` to load a pretrained model" ) trainer.test()
def main(config): prepare_dirs_and_logger(config) tf.set_random_seed(config.random_seed) from data import BatchManager batch_manager = BatchManager(config) trainer = Trainer_tumor(config, batch_manager) if config.is_train: save_config(config) trainer.train() else: if not config.load_path: raise Exception( "[!] You shou/home/tudorld specify `load_path` to load a pretrained model" ) trainer.test()
def test2d(config): prepare_dirs_and_logger(config) tf.set_random_seed(config.random_seed) batch_manager = BatchManager(config) # thread test sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess_config.allow_soft_placement = True sess_config.log_device_placement = False sess = tf.Session(config=sess_config) batch_manager.start_thread(sess) x, y = batch_manager.batch() # [-1, 1] x_ = x.eval(session=sess) # y_ = y.eval(session=sess) batch_manager.stop_thread() x_w = vort_np(x_) x_w /= np.abs(x_w).max() x_w = (x_w + 1) * 0.5 x_w = np.uint8(plt.cm.RdBu(x_w[..., 0]) * 255)[..., :3] x_ = (x_ + 1) * 127.5 # [0, 255] b_ch = np.ones([config.batch_size, config.res_y, config.res_x, 1]) * 127.5 x_ = np.concatenate((x_, b_ch), axis=-1) x_ = np.concatenate((x_, x_w), axis=0) save_image(x_, '{}/x_fixed.png'.format(config.model_dir)) # random pick from parameter space x, pi, zi = batch_manager.random_list(config.batch_size) x_w = vort_np(x / 127.5 - 1) x_w /= np.abs(x_w).max() x_w = (x_w + 1) * 0.5 x_w = np.uint8(plt.cm.RdBu(x_w[..., 0]) * 255)[..., :3] x = np.concatenate((x, x_w), axis=0) save_image(x, '{}/x.png'.format(config.model_dir)) with open('{}/x_p.txt'.format(config.model_dir), 'w') as f: f.write(str(pi)) f.write(str(zi))