Exemple #1
0
def evaluate():
    wordss, tagss, lengths = test_helper.gen_batch().__next__()
    sentence_in = prepare_sequence(wordss, word_to_ix)
    target_tag_seqs = prepare_sequence(tagss, tag_to_ix)
    predict_scores, predict_tag_seqs = model(sentence_in, lengths)
    for tag in ['a', 'b', 'c']:
        f1_score(target_tag_seqs, predict_tag_seqs, tag, tag_to_ix, lengths)
Exemple #2
0
def train():
    # Restore model parameters
    model_file = model_path + 'params.pkl'
    if os.path.exists(model_file):
        model.load_state_dict(torch.load(model_file))
        print("resotre model from {}".format(model_file))

    # Select optimizer
    optimizer = optim.Adam(model.parameters(), lr=0.01)

    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(epoch_num):
        index = 0
        for batch_samples in train_helper.gen_batch():
            starttime = time.time()
            # Step 0. Genetate batch samples.
            wordss, tagss, lengths = batch_samples

            # Step 1. Remember that Pytorch accumulates gradients.
            # We need to clear them out before each instance
            model.zero_grad()

            # Step 2. Get our inputs ready for the network, that is,
            # turn them into Tensors of word indices.
            sentence_in = prepare_sequence(wordss, word_to_ix)
            if use_cuda:
                sentence_in = sentence_in.cuda()

            label_out = prepare_sequence(tagss, tag_to_ix)
            if use_cuda:
                label_out = label_out.cuda()

            # Step 3. Run our forward pass.
            loss = model.neg_log_likelihood(sentence_in, label_out, lengths)

            # Step 4. Compute the loss, gradients, and update the parameters by
            # calling optimizer.step()
            loss.backward()
            optimizer.step()
            # print info
            print("epoch:{}, batch:{}, loss:{}, timecost:{}".format(
                epoch, index,
                loss.cpu().tolist()[0], (time.time() - starttime)))

            # Step 5. Save model
            evaluate()
            if index and index % 10 == 0:
                torch.save(model.state_dict(), model_file)
            index += 1
    torch.save(model.state_dict(), model_file)
Exemple #3
0
def eval(tag_path, corpus_path):
    correct = 0
    total = 0
    acc_list = []
    model_name = MODEL_NAME
    embedding_dim = EMBEDDING_DIM
    hidden_dim = HIDDEN_DIM
    word_to_ix = WORD_TO_IX

    model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim)
    checkpoint = torch.load(model_name)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()

    tag_to_ix = {'1': 0, '2': 1, '3': 2, '4': 3, '5': 4}
    sentences, tags = load_train_data(tag_path, corpus_path)
    labels = torch.tensor([[tag_to_ix[tag]] for tag in tags[:]])

    with torch.no_grad():
        for i, sen in enumerate(tqdm(sentences[:])):
            input = prepare_sequence(sen, word_to_ix)
            output = model(input)
            _, predicted = torch.max(output.data, 1)
            label = labels[i]
            total += label.size(0)
            correct += (predicted == label).sum().item()
            acc = round(100 * correct / total, 2)
            acc_list.append(acc)
    assert len(acc_list) == len(sentences)
    final_acc = acc
    plt.plot(list(range(len(tags))), acc_list)
    plt.xlabel('pred_num')
    plt.ylabel('accuracy / %')
    plt.show()
    return final_acc
Exemple #4
0
def train_and_val():
    embedding_dim = 100
    hidden_dim = 100
    model_load_path = None
    best_model_save_path = 'model/model_100_best_0223.pth'
    max_score = 0
    stop_epoch = 30
    unimprove_time = 0
    val_json_path = '/home/agwave/Data/resume/val_0222.json'
    val_pdf_dir = '/home/agwave/Data/resume/val_0222/'

    training_data = get_data_from_data_txt(TRAIN_WORD_TO_TAG_PATH)
    with open('supporting_document/train_word_to_tag_0223.json', 'r') as j:
        word_to_ix = json.load(j)
    tag_to_ix = {'b-name': 0, 'i-name': 1, 'b-bir': 2, 'i-bir': 3, 'b-gend': 4, 'i-gend': 5,
                 'b-tel': 6, 'i-tel': 7, 'b-acad': 8, 'i-acad': 9, 'b-nati': 10, 'i-nati': 11,
                 'b-live': 12, 'i-live': 13, 'b-poli': 14, 'i-poli': 15, 'b-unv': 16, 'i-unv': 17,
                 'b-comp': 18, 'i-comp': 19, 'b-work': 20, 'i-work': 21, 'b-post': 22, 'i-post': 23,
                 'b-proj': 24, 'i-proj': 25, 'b-resp': 26, 'i-resp': 27, 'b-degr': 28, 'i-degr': 29,
                 'b-grti': 30, 'i-grti': 31, 'b-woti': 32, 'i-woti': 33, 'b-prti': 34, 'i-prti': 35,
                 'o': 36, '<start>': 37, '<stop>': 38}
    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, embedding_dim, hidden_dim)
    optimizer = optim.Adam(model.parameters(), lr=0.01)
    start_epoch = 0
    if model_load_path != None:
        print('load model...')
        checkpoint = torch.load(model_load_path)
        model.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        start_epoch = checkpoint['epoch'] + 1
    preliminary_score = get_score_by_model(model, val_json_path, val_pdf_dir)
    print('preliminary score:', preliminary_score)

    for epoch in range(start_epoch, stop_epoch):
        print("---------------------")
        print("running epoch : ", epoch)
        start_time = time.time()
        for sentence, tags in tqdm(training_data):
            model.zero_grad()
            sentence_in = prepare_sequence(sentence, word_to_ix)
            targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
            loss = model.neg_log_likelihood(sentence_in, targets)
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), 1)
            optimizer.step()
        cur_epoch_score = get_score_by_model(model, val_json_path, val_pdf_dir)
        print('score', cur_epoch_score)
        print('running time:', time.time() - start_time)
        if cur_epoch_score > max_score:
            unimprove_time = 0
            max_score = cur_epoch_score
            torch.save({
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'epoch': epoch
            }, best_model_save_path)
            print('save best model successfully.')
        else:
            break
Exemple #5
0
def predict():
    word_to_ix = load_dict(word_dict_file)
    tag_to_ix = load_dict(tag_dict_file)
    ix_to_tag = {v: k for k, v in tag_to_ix.items()}
    model_file = model_path + 'params.pkl'
    if os.path.exists(model_file):
        model.load_state_dict(torch.load(model_file))

    for wordss, tagss, lengths in pred_helper.gen_batch():
        sentence_in = prepare_sequence(wordss, word_to_ix)
        predict_scores, predict_ix_seqs = model(sentence_in, lengths)
        for word, ix in zip(wordss[0], predict_ix_seqs[0]):
            print(word, ix_to_tag[ix])
        print()
Exemple #6
0
def predict(sentence):
    sentence = sentence.split()
    model_name = BEST_NAME
    embedding_dim = EMBEDDING_DIM
    hidden_dim = HIDDEN_DIM
    word_to_ix = WORD_TO_IX

    model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim)
    checkpoint = torch.load(model_name)
    model.load_state_dict(checkpoint['model_state_dict'])
    input = prepare_sequence(sentence, word_to_ix)
    with torch.no_grad():
        output = model(input)
        print(output)
        _, predicted = torch.max(output.data, 1)
        print(predicted)
Exemple #7
0
def get_time_to_score(tsv_path, thing, model_path):
    time_to_count = {}
    time_to_scoresum = {}
    if thing == 'hair_dryer':
        id = '732252283'
    elif thing == 'microwave':
        id = '423421857'
    else:
        id = '246038397'

    with open('train_' + thing + '_word_to_ix.json', 'r') as j:
        word_to_ix = json.load(j)
    embedding_dim = EMBEDDING_DIM
    hidden_dim = HIDDEN_DIM
    model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim)
    checkpoints = torch.load(model_path)
    model.load_state_dict(checkpoints['model_state_dict'])
    model.eval()

    with open(tsv_path, 'r') as f:
        reader = csv.reader(f, delimiter='\t')
        for i, r in enumerate(reader):
            if i == 0 or r[4] != id:
                continue
            month, _, year = r[14].split('/')
            if year not in {'2014', '2015'}:
                continue
            time = get_idx_by_year_month(int(year), int(month))
            if time < 8:
                continue
            sen = (r[12] + ' ' + r[13]).lower()
            sen = re.sub(r'[^A-Za-z0-9,.!]+', ' ', sen)
            input = prepare_sequence(sen.split(), word_to_ix)
            with torch.no_grad():
                output = model(input)
                _, predicted = torch.max(output.data, 1)
            pred_score = predicted.item()
            if time not in time_to_count:
                time_to_count[time] = 0
                time_to_scoresum[time] = 0.
            time_to_count[time] += 1
            time_to_scoresum[time] += pred_score
    time_to_scoremean = {}
    for time in time_to_count.keys():
        time_to_scoremean[time] = time_to_scoresum[time] / time_to_count[time]
    print(time_to_count)
    return time_to_scoremean
Exemple #8
0
def trainning():
    """
    训练模型
    :return:
    """
    train_obj = Train()

    training_data, word_to_ix, tag_to_ix = util.data_prepare(
        config.TRAIN_DATA_PATH)
    training_data.char = training_data.char.apply(
        lambda c: util.prepare_sequence(c, word_to_ix))
    training_data.tag = training_data.tag.apply(
        lambda t: torch.tensor([tag_to_ix[t_] for t_ in t], dtype=torch.long))

    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, config.EMBEDDING_DIM,
                       config.HIDDEN_DIM)
    # 定义优化器为Adam优化器
    optimizer = optim.Adam(model.parameters(), lr=config.lr)

    best_val_loss = float("inf")
    best_model = None

    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(
            config.EPOCHES
    ):  # again, normally you would NOT do 300 epochs, it is toy data
        rmrb_loader = training_data.iloc[:-10000].sample(config.BATCH_SIZE)
        rmrb_loader_test = training_data.iloc[-10000:].sample(1000)

        epoch_start_time = time.time()
        train_obj.train(model, epoch, optimizer, rmrb_loader)
        val_loss = train_obj.evaluate(model, rmrb_loader_test)
        print('-' * 89)
        print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '.
              format(epoch, (time.time() - epoch_start_time), val_loss))
        print('-' * 89)

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            best_model = model

        if epoch % 20 == 0:
            torch.save(best_model.state_dict(), config.MODEL_PATH)
Exemple #9
0
def train_all_data():
    embedding_dim = 100
    hidden_dim = 100
    stop_epoch = 1
    model_1_epoch = 'model/model_1_epoch_lr0001.pth'

    training_data = get_data_from_data_txt(DATA_PERFECT_PATH)
    word_to_ix = get_word_to_ix(training_data, min_word_freq=1)
    tag_to_ix = {'b-name': 0, 'i-name': 1, 'b-bir': 2, 'i-bir': 3, 'b-gend': 4, 'i-gend': 5,
                 'b-tel': 6, 'i-tel': 7, 'b-acad': 8, 'i-acad': 9, 'b-nati': 10, 'i-nati': 11,
                 'b-live': 12, 'i-live': 13, 'b-poli': 14, 'i-poli': 15, 'b-unv': 16, 'i-unv': 17,
                 'b-comp': 18, 'i-comp': 19, 'b-work': 20, 'i-work': 21, 'b-post': 22, 'i-post': 23,
                 'b-proj': 24, 'i-proj': 25, 'b-resp': 26, 'i-resp': 27, 'b-degr': 28, 'i-degr': 29,
                 'b-grti': 30, 'i-grti': 31, 'b-woti': 32, 'i-woti': 33, 'b-prti': 34, 'i-prti': 35,
                 'o': 36, '<start>': 37, '<stop>': 38, 'c-live': 39, 'c-proj': 40, 'c-woti': 41,
                 'c-post': 42, 'c-unv': 43, 'c-nati': 44, 'c-poli': 45, 'c-prti':46, 'c-comp': 47}

    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, embedding_dim, hidden_dim)
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(
            stop_epoch):  # again, normally you would NOT do 300 epochs, it is toy data
        print("---------------------")
        print("running epon : ", epoch + 1)
        start_time = time.time()
        for sentence, tags in tqdm(training_data):
            model.zero_grad()
            sentence_in = prepare_sequence(sentence, word_to_ix)
            targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
            loss = model.neg_log_likelihood(sentence_in, targets)
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), 15)
            optimizer.step()
        cur_epoch_score = get_score_by_model(model, TRAIN_JSON_PATH, TRAIN_PDF_DIR)
        print('score', cur_epoch_score)
        print('running time:', time.time() - start_time)
        print()
        if epoch == stop_epoch:
            torch.save({
                'model_state_dict': model.state_dict()
            }, model_1_epoch)
Exemple #10
0
def get_score_by_model(model, train_json_path, pdf_root_dir):
    pdf_path = os.listdir(pdf_root_dir)
    random.shuffle(pdf_path)
    path = pdf_path[:len(pdf_path)]
    with open('supporting_document/word_to_ix_add_unk_0219.json') as j:
        word_to_ix = json.load(j)

    tag_to_ix = {'b-name': 0, 'i-name': 1, 'b-bir': 2, 'i-bir': 3, 'b-gend': 4, 'i-gend': 5,
                 'b-tel': 6, 'i-tel': 7, 'b-acad': 8, 'i-acad': 9, 'b-nati': 10, 'i-nati': 11,
                 'b-live': 12, 'i-live': 13, 'b-poli': 14, 'i-poli': 15, 'b-unv': 16, 'i-unv': 17,
                 'b-comp': 18, 'i-comp': 19, 'b-work': 20, 'i-work': 21, 'b-post': 22, 'i-post': 23,
                 'b-proj': 24, 'i-proj': 25, 'b-resp': 26, 'i-resp': 27, 'b-degr': 28, 'i-degr': 29,
                 'b-grti': 30, 'i-grti': 31, 'b-woti': 32, 'i-woti': 33, 'b-prti': 34, 'i-prti': 35,
                 'o': 36, '<start>': 37, '<stop>': 38, 'c-live': 39, 'c-proj': 40, 'c-woti': 41,
                 'c-post': 42, 'c-unv': 43, 'c-nati': 44, 'c-poli': 45, 'c-prti':46, 'c-comp': 47}
    ix_to_tag = {v: k for k, v in tag_to_ix.items()}

    pred_pdf_info = {}
    print('predicting...')
    for p in tqdm(path):
        if p.endswith('.pdf'):
            file_name = p[:-4]
            try:
                content = get_str_from_pdf(os.path.join(pdf_root_dir, p))
                char_list = list(content)
                with torch.no_grad():
                    precheck_sent = prepare_sequence(char_list, word_to_ix)
                    _, ix = model(precheck_sent)
                info = write_info_by_ix_plus(ix, content, ix_to_tag)
                pred_pdf_info[file_name] = info
            except Exception as e:
                if file_name not in pred_pdf_info:
                    pred_pdf_info[file_name] = {}
                print(e)
    print('predict OK!')

    with open(train_json_path, 'r') as j:
        label_pdf_info = json.load(j)
    score = get_score_by_label_pred(label_pdf_info, pred_pdf_info)
    return score
def evaluate(model, sentence, word_to_idx):
    """Return an int as the predict."""
    inputs = prepare_sequence(sentence, word_to_idx)
    model.hidden = model.init_hidden()
    labels = model(inputs)
    return labels.data.max(1)[1][0]
Exemple #12
0
def eval_one_sample():
    sample = list(get_str_from_pdf(SAMPLE_PDF_FILE))

    with open('supporting_document/word_to_ix_add_unk_0219.json') as j:
        word_to_ix = json.load(j)

    tag_to_ix = {
        'b-name': 0,
        'i-name': 1,
        'b-bir': 2,
        'i-bir': 3,
        'b-gend': 4,
        'i-gend': 5,
        'b-tel': 6,
        'i-tel': 7,
        'b-acad': 8,
        'i-acad': 9,
        'b-nati': 10,
        'i-nati': 11,
        'b-live': 12,
        'i-live': 13,
        'b-poli': 14,
        'i-poli': 15,
        'b-unv': 16,
        'i-unv': 17,
        'b-comp': 18,
        'i-comp': 19,
        'b-work': 20,
        'i-work': 21,
        'b-post': 22,
        'i-post': 23,
        'b-proj': 24,
        'i-proj': 25,
        'b-resp': 26,
        'i-resp': 27,
        'b-degr': 28,
        'i-degr': 29,
        'b-grti': 30,
        'i-grti': 31,
        'b-woti': 32,
        'i-woti': 33,
        'b-prti': 34,
        'i-prti': 35,
        'o': 36,
        '<start>': 37,
        '<stop>': 38,
        'c-live': 39,
        'c-proj': 40,
        'c-woti': 41,
        'c-post': 42,
        'c-unv': 43,
        'c-nati': 44,
        'c-poli': 45,
        'c-prti': 46,
        'c-comp': 47
    }

    ix_to_word = {}
    for k, v in tag_to_ix.items():
        ix_to_word[v] = k

    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)

    checkpoint = torch.load('model_100_all_data_0226.pth')
    model.load_state_dict(checkpoint['model_state_dict'])
    with torch.no_grad():
        precheck_sent = prepare_sequence(sample, word_to_ix)
        score, ix = model(precheck_sent)
    print(score)
    predict = []
    for i in ix:
        predict.append(ix_to_word[i])
    for i in range(len(ix)):
        print(sample[i], predict[i])
Exemple #13
0
def get_score_from_model_path(model_path,
                              tag_file,
                              pdf_root_dir,
                              pred_json_dir=None):
    path = os.listdir(pdf_root_dir)
    with open('supporting_document/train_word_to_tag_0223.json') as j:
        word_to_ix = json.load(j)
    tag_to_ix = {
        'b-name': 0,
        'i-name': 1,
        'b-bir': 2,
        'i-bir': 3,
        'b-gend': 4,
        'i-gend': 5,
        'b-tel': 6,
        'i-tel': 7,
        'b-acad': 8,
        'i-acad': 9,
        'b-nati': 10,
        'i-nati': 11,
        'b-live': 12,
        'i-live': 13,
        'b-poli': 14,
        'i-poli': 15,
        'b-unv': 16,
        'i-unv': 17,
        'b-comp': 18,
        'i-comp': 19,
        'b-work': 20,
        'i-work': 21,
        'b-post': 22,
        'i-post': 23,
        'b-proj': 24,
        'i-proj': 25,
        'b-resp': 26,
        'i-resp': 27,
        'b-degr': 28,
        'i-degr': 29,
        'b-grti': 30,
        'i-grti': 31,
        'b-woti': 32,
        'i-woti': 33,
        'b-prti': 34,
        'i-prti': 35,
        'o': 36,
        '<start>': 37,
        '<stop>': 38
    }
    ix_to_tag = {v: k for k, v in tag_to_ix.items()}

    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
    checkpoint = torch.load(model_path)
    model.load_state_dict(checkpoint['model_state_dict'])

    pred_pdf_info = {}
    print('predicting...')
    for p in tqdm(path):
        if p.endswith('.pdf'):
            file_name = p[:-4]
            try:
                content = get_str_from_pdf(os.path.join(pdf_root_dir, p))
                char_list = list(content)
                with torch.no_grad():
                    precheck_sent = prepare_sequence(char_list, word_to_ix)
                    _, ix = model(precheck_sent)
                info = write_info_by_ix(ix, content, ix_to_tag)
                pred_pdf_info[file_name] = info
            except Exception as e:
                if file_name not in pred_pdf_info:
                    pred_pdf_info[file_name] = {}
                print(e)
    print('predict OK!')
    if pred_json_dir != None:
        pred_json_path = os.path.join(pred_json_dir, model_path[-4] + '.json')
        with open(pred_json_path, 'w') as j:
            json.dump(pred_pdf_info, j, ensure_ascii=False)

    with open(tag_file, 'r') as j:
        label_pdf_info = json.load(j)
    score = get_score_by_label_pred(label_pdf_info, pred_pdf_info)
    return score
Exemple #14
0
def train():
    logging.basicConfig(level=logging.INFO,
                        filename='log.txt',
                        format='%(message)s')
    tag_path = TRAIN_TAG_PATH
    corpus_path = TRAIN_CORPUS_PATH
    save_model_name = MODEL_NAME
    best_model_name = BEST_NAME
    load_model_path = None
    embedding_dim = EMBEDDING_DIM
    hidden_dim = HIDDEN_DIM
    train_epoch = TRAIN_EPOCH
    word_to_ix = WORD_TO_IX
    start_epoch = 0
    best_score = 0.
    loss_info, train_avg_info, test_avg_info = [], [], []

    sentences, tags = load_train_data(tag_path, corpus_path)
    tag_to_ix = {'1': 0, '2': 1, '3': 2, '4': 3, '5': 4}
    label = torch.tensor([[tag_to_ix[tag]] for tag in tags])

    model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim, dropout=0.3)
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    criterion = nn.CrossEntropyLoss()

    if load_model_path is not None:
        checkpoints = torch.load(load_model_path)
        model.load_state_dict(checkpoints['model_state_dict'])
        optimizer.load_state_dict(checkpoints['optim_state_dict'])
        start_epoch = checkpoints['epoch']

    start_time = time.time()
    logging.info('----------------------')
    for epoch in range(start_epoch, train_epoch):
        running_loss = 0.0
        for i, sen in enumerate(tqdm(sentences)):
            optimizer.zero_grad()
            input = prepare_sequence(sen, word_to_ix)
            output = model(input)
            loss = criterion(output, label[i])
            running_loss += loss.item()
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), 15)
            optimizer.step()

        torch.save(
            {
                'model_state_dict': model.state_dict(),
                'optim_state_dict': optimizer.state_dict(),
                'epoch': epoch + 1
            }, save_model_name)

        train_avg = eval(TRAIN_TAG_PATH, TRAIN_CORPUS_PATH)
        test_avg = eval(TEST_TAG_PATH, TEST_CORPUS_PATH)
        loss_info.append(running_loss)
        train_avg_info.append(train_avg)
        test_avg_info.append(test_avg)

        logging.info('********')
        logging.info('epoch: {}'.format(epoch + 1))
        logging.info('loss: {}'.format(running_loss))
        logging.info('train avg: {}'.format(train_avg))
        logging.info('test avg: {}'.format(test_avg))

        if test_avg > best_score:
            torch.save({
                'model_state_dict': model.state_dict(),
            }, best_model_name)
            best_score = test_avg
            print('save best')

    print('training time:', time.time() - start_time)
# # Note that element i,j of the output is the score for tag j for word i.
# inputs = prepare_sequence(citing_sentences[0], word_to_idx)
# print(inputs)
# labels = model(inputs)
# print(labels)
# label_to_text(labels, polarity_to_idx)
since = time.time()
training_data = list(zip(citing_sentences, polarities))
for epoch in range(EPOCHS):
    total_loss = torch.Tensor([0])
    i = 0
    random.shuffle(training_data)
    for sentence, target in training_data:
        # Step 1. Prepare the inputs to be passed to the model (i.e, turn the words
        # into integer indices and wrap them in variables)
        sentence_in = prepare_sequence(sentence, word_to_idx)
        target = autograd.Variable(torch.LongTensor([target]))

        # Step 2. Recall that torch *accumulates* gradients. Before passing in a
        # new instance, you need to zero out the gradients from the old
        # instance
        model.zero_grad()
        # Also, we need to clear out the hidden state of the LSTM,
        # detaching it from its history on the last instance.
        model.hidden = model.init_hidden()

        # step 3. Run forward pass
        labels = model(sentence_in)

        # Step 4. Compute your loss function. (Again, Torch wants the target
        # word wrapped in a variable)
Exemple #16
0
    for batch in range(num_batches):
        # if((batch+1) % 50 == 0 or (batch+1) == num_batches): 
        #     print("Training on batch: {}/{}".format(batch+1,num_batches))
        batch_begin = batch*size_batch
        batch_end = (batch+1)*size_batch*seq_len
        if(batch_end > len(labels)):
            batch_end = len(labels)
        x_data = []
        y_data = []
        for i in range(batch_begin, batch_end):
            #x_data.append(util.convert_to_one_hot(words[i], words2int, vocab_size)) #caso one-hot
            x_data.append(util.get_index(words[i], words2int))  #caso indice per parola
            y_data.append(labels[i])


        x_tensor = util.prepare_sequence(x_data,seq_len)
        y_tensor = util.prepare_sequence(y_data,seq_len)
        #x_tensor = Variable(torch.FloatTensor(seq))
        #y_tensor = Variable(torch.FloatTensor(y_data))

        optimizer.zero_grad()

        y_prob, (hn, cn) = model(x_tensor, (h0, c0))
        #util.tensor_desc(y_prob)
        #print(y_tensor.shape)
        y_prob = torch.squeeze(y_prob)
        y_prob = y_prob.view(-1, seq_len)
        loss = criterion(y_prob, y_tensor)
        loss = torch.mul(class_weights, loss )               
        loss= torch.mean(loss)
        loss.backward()