Exemple #1
0
def main():
    init = util.readImage('input/TestSeq/Shift0.png')
    final = util.readImage('input/TestSeq/ShiftR2.png')
    #final = util.readImage('input/TestSeq/ShiftR5U5.png')
    #final = util.readImage('input/TestSeq/ShiftR10.png')
    #final = util.readImage('input/TestSeq/ShiftR20.png')
    #final = util.readImage('input/TestSeq/ShiftR40.png')

    U, V = lk_flow(init, final)
    #U, V = hierarchical_lk(init, final)

    U = upscale(U)
    V = upscale(V)

    U = cv2.cvtColor(U, cv2.COLOR_GRAY2RGB)
    V = cv2.cvtColor(V, cv2.COLOR_GRAY2RGB)

    false_color_U = cv2.applyColorMap(U, cv2.COLORMAP_JET)
    false_color_V = cv2.applyColorMap(V, cv2.COLORMAP_JET)

    #namedWindow("window")
    cv2.imshow("U", false_color_U)
    cv2.imshow("V", false_color_V)

    import time
    time.sleep(30)
Exemple #2
0
def main():
    parser = argparse.ArgumentParser(description='Vision Simulator')
    parser.add_argument(
        'pixel_map',
        type=str,
        help='An image of what a single white pixel looks like to you.')
    parser.add_argument('images',
                        nargs='+',
                        help='Images to apply your vision to.')
    parser.add_argument(
        '-n',
        '--norm-factor',
        default=1.7,
        type=float,
        help=
        'The exponent factor used in normalizing pixel_map. You may have to adjust this value for good results.'
    )
    parser.add_argument('-v',
                        '--verbose',
                        action='store_true',
                        help='Run in verbose mode.')
    args = parser.parse_args()

    visionImg = util.readImage(args.pixel_map)
    visionMap = util.getBrightnessMap(visionImg, args.norm_factor)
    for path in args.images:
        image = util.readImage(path, convertToFloat=True)
        image = applyVision(visionMap, image, verbose=args.verbose)
        util.writeImage(path + '.vision.png', image)
Exemple #3
0
def q1b():
    init = util.readImage('input/TestSeq/Shift0.png')
    final = util.readImage('input/TestSeq/ShiftR10.png')
    plotDisplacements(init, final, 'output/ps5-1-b-1.png')
    final = util.readImage('input/TestSeq/ShiftR20.png')
    plotDisplacements(init, final, 'output/ps5-1-b-2.png')
    final = util.readImage('input/TestSeq/ShiftR40.png')
    plotDisplacements(init, final, 'output/ps5-1-b-3.png')
Exemple #4
0
def main3():
    init = util.readImage('input/TestSeq/Shift0.png')
    final = util.readImage('input/TestSeq/ShiftR2.png')
    U, V = lk_flow(init, final)
    warped = warp.warp(final, U, V)
    cv2.imshow("original", init)
    cv2.imshow("modified", warped)
    import time
    time.sleep(30)
Exemple #5
0
def q3a():
    image1 = util.readImage('input/DataSeq1/yos_img_01.jpg')
    image2 = util.readImage('input/DataSeq1/yos_img_02.jpg')
    image3 = util.readImage('input/DataSeq1/yos_img_03.jpg')
    q3helper(image1, image2, 1)
    q3helper(image2, image3, 5)
    image1 = util.readImage('input/DataSeq2/0.png')
    image2 = util.readImage('input/DataSeq2/1.png')
    image3 = util.readImage('input/DataSeq2/2.png')
    q3helper(image1, image2, 3)
    q3helper(image2, image3, 7)
Exemple #6
0
def q2b():
    image = util.readImage('input/DataSeq1/yos_img_01.jpg')
    gauPyr = pyramid.gaussPyramid(image, 3)
    lapPyr = pyramid.laplPyramid(gauPyr)
    q2_helper(lapPyr, 'output/ps5-2-b-2.png')
Exemple #7
0
def q2a():
    image = util.readImage('input/DataSeq1/yos_img_01.jpg')
    gauPyr = pyramid.gaussPyramid(image, 3)
    q2_helper(gauPyr, 'output/ps5-2-b-1.png')
Exemple #8
0
def q1a():
    init = util.readImage('input/TestSeq/Shift0.png')
    final = util.readImage('input/TestSeq/ShiftR2.png')
    final2 = util.readImage('input/TestSeq/ShiftR5U5.png')
    plotDisplacements(init, final, 'output/ps5-1-a-1.png')
    plotDisplacements(init, final2, 'output/ps5-1-a-2.png')
Exemple #9
0
    for key in metric_keys
}

for key in metric_keys:
    f = f_dict[key]
    f.write('name ')
    for i in range(1, num_class):
        f.write('OAR%d ' % (i))
    f.write('average\n')

count = 0
for patient in test_list:
    predict_path = os.path.join(predict_root_path, patient, 'predict.nii.gz')
    label_path = os.path.join(label_root_path, patient, 'label.nii.gz')

    predict = readImage(predict_path).astype(np.uint8)
    label = readImage(label_path)

    predict = one_hot(predict)
    label = one_hot(label)

    for key in metric_keys:
        f = f_dict[key]
        temp_list = []
        temp_string = 'patient{} '.format(patient)
        for i in range(1, num_class):
            metric = metric_dict[key](label[..., i], predict[..., i])
            temp_string += '%.4f ' % (metric)
            temp_list.append(metric)
        avg = average(temp_list)
        temp_string += '%.4f\n' % (avg)