Exemple #1
0
def bfixpix(image_file, mask_file, outsuffix='_f', msksuffix='_s'):
    """
    Inputs
    ---------
    image_file : string
        input image file to fix bad pixels on

    mask_file : string
        mask file (0 == good pixels, >0 == bad pixels

    outsuffix : string
        suffix for fixed image. default = '_f'

    msksuffix : string
        suffix for bad pixels significance mask. default = '_s'
    """
    outf = image_file.replace('.fits', outsuffix + '.fits')
    outm = image_file.replace('.fits', msksuffix + '.fits')
    
    util.rmall([outf, outm])
    print("bfixpix: {0} -> {1}".format(image_file, outf))

    # fetch the image, fetch the mask
    img, hdr = fits.getdata(image_file, header=True)
    msk = fits.getdata(mask_file)

    # median the image
    medimg = ndimage.median_filter(img, 3, mode='nearest')

    # generate the pixel files
    outf_img = np.where(msk == 0, img, medimg)
    outm_img = np.where(msk == 1, (img - medimg), 0)

    fits.writeto(outf, outf_img, hdr)
    fits.writeto(outm, outm_img, hdr)
Exemple #2
0
def darPlusDistortion(inputFits, outputRoot, xgeoim=None, ygeoim=None):
    """
    Create lookup tables (stored as FITS files) that can be used
    to correct DAR. Optionally, the shifts due to DAR can be added
    to existing NIRC2 distortion lookup tables if the xgeoim/ygeoim
    input parameters are set.

    Inputs:
    inputFits - a NIRC2 image for which to determine the DAR correction
    outputRoot - the root name for the output. This will be used as the
        root name of two new images with names, <outputRoot>_x.fits and 
        <outputRoot>_y.fits.

    Optional Inputs:
    xgeoim/ygeoim - FITS images used in Drizzle distortion correction
        (lookup tables) will be modified to incorporate the DAR correction.
        The order of the correction is 1. distortion, 2. DAR.
        
    """
    # Get the size of the image and the half-points
    hdr = pyfits.getheader(inputFits)
    imgsizeX = float(hdr['NAXIS1'])
    imgsizeY = float(hdr['NAXIS2'])
    halfX = round(imgsizeX / 2.0)
    halfY = round(imgsizeY / 2.0)

    # First get the coefficients
    (pa, darCoeffL, darCoeffQ) = nirc2dar(inputFits)
    #(a, b) = nirc2darPoly(inputFits)

    # Create two 1024 arrays (or read in existing ones) for the
    # X and Y lookup tables
    if ((xgeoim == None) or (xgeoim == '')):
        x = np.zeros((imgsizeY, imgsizeX), dtype=float)
    else:
        x = pyfits.getdata(xgeoim)

    if ((ygeoim == None) or (ygeoim == '')):
        y = np.zeros((imgsizeY, imgsizeX), dtype=float)
    else:
        y = pyfits.getdata(ygeoim)

    # Get proper header info.
    fits = pyfits.open(inputFits)

    axisX = np.arange(imgsizeX, dtype=float) - halfX
    axisY = np.arange(imgsizeY, dtype=float) - halfY
    xcoo2d, ycoo2d = np.meshgrid(axisX, axisY)

    xnew1 = xcoo2d + x
    ynew1 = ycoo2d + y

    # Rotate coordinates clockwise by PA so that zenith is along +ynew2
    # PA = parallactic angle (angle from +y to zenith going CCW)
    sina = math.sin(pa)
    cosa = math.cos(pa)

    xnew2 = xnew1 * cosa + ynew1 * sina
    ynew2 = -xnew1 * sina + ynew1 * cosa

    # Apply DAR correction along the y axis
    xnew3 = xnew2
    ynew3 = ynew2*(1 + darCoeffL) + ynew2*np.abs(ynew2)*darCoeffQ

    # Rotate coordinates counter-clockwise by PA back to original
    xnew4 = xnew3 * cosa - ynew3 * sina
    ynew4 = xnew3 * sina + ynew3 * cosa

    #xnew2 = a[0] + a[1]*xnew1 + a[2]*ynew1 + \
    #        a[3]*xnew1**2 + a[4]*xnew1*ynew1 + a[5]*ynew1**2
    #ynew2 = b[0] + b[1]*xnew1 + b[2]*ynew1 + \
    #        b[3]*xnew1**2 + b[4]*xnew1*ynew1 + b[5]*ynew1**2

    x = xnew4 - xcoo2d
    y = ynew4 - ycoo2d

    xout = outputRoot + '_x.fits'
    yout = outputRoot + '_y.fits'
    util.rmall([xout, yout])
    fits[0].data = x
    fits[0].writeto(xout, output_verify='silentfix')
    fits[0].data = y
    fits[0].writeto(yout, output_verify='silentfix')

    return (xout, yout)
def red_dir(directory,
            clean_dir,
            sky_key='sky',
            flat_key='Domeflat',
            sci_keys=['Wd 2 pos 1', 'Wd 2 pos 2', 'Wd 2 pos 3', 'Wd 2 pos 4'],
            frame_list=None):
    '''
    Note, must be ran from pyraf interavtive terminal
    perform reduction on directory given
    directory must be full path name
    sky_key is header keywaord for sky frames
    dome_key is header keyword for domes
    sci_coadds is the minimum number of coadds required for an image to be considered a science image
    '''

    #os.chdir(directory)
    print 'Reduction being performed in ', directory

    if frame_list == None:
        frame_list = glob.glob(directory + '*.fits')
        dir_ap = ''
        for i in range(len(frame_list)):
            frame_list[i] = frame_list[i].replace('.fits', '')
    else:
        dir_ap = directory

    #go through the fits files and make 3 lists, one of skies, one of domes one of science frames

    sci_f = open('obj.lis', 'w')
    dome_f = open('flat.lis', 'w')
    all_f = open('all.lis', 'w')
    sky_f = open('sky.lis', 'w')
    dome_list = []
    sci_l = []

    for i in frame_list:
        #import pdb; pdb.set_trace()
        print >> all_f, dir_ap + i + '.fits'
        head = fits.getheader(dir_ap + i + '.fits')
        if head['OBJECT'] == sky_key:
            print >> sky_f, dir_ap + 'g' + i + '.fits'
        elif head['OBJECT'] == flat_key:
            print >> dome_f, dir_ap + 'g' + i + '.fits'
            dome_list.append(i)
        else:
            for j in sci_keys:
                if head['OBJECT'].replace(' ', '') == j:
                    print >> sci_f, dir_ap + 'g' + i + '.fits'
                    sci_l.append(i + '.fits')
    if len(sci_l) == 0:
        print 'No science frames found in directory'
        import pdb
        pdb.set_trace()

    sky_f.close()
    sci_f.close()
    dome_f.close()
    all_f.close()

    from pyraf.iraf import gemini
    from pyraf.iraf import gsaoi
    from pyraf import iraf

    gemini.unlearn()
    gsaoi.unlearn()

    #raw_dir = util.getcwd()
    #prep_dir = raw_dir+'g'
    #print raw_dir

    util.rmall(['gaprep.log'])
    print 'Arguements for gaprepare', '@all.lis', directory + 'g'
    gsaoi.gaprepare('@all.lis',
                    outpref=directory + 'g',
                    fl_vardq='yes',
                    logfile='gaprep.log')

    gsaoi.gaflat('@flat.lis', outsufx='flat', fl_vardq='yes')
    flat_name = 'g' + dome_list[0] + "_flat.fits"
    shutil.move('g' + dome_list[0] + "_flat.fits",
                directory + 'g' + dome_list[0] + "_flat.fits")

    #print flat_name

    #gsaoi.gareduce('@sky.lis', rawpath=directory, gaprep_pref = directory+'g',calpath=directory, fl_flat='yes', flatimg=flat_name)
    gsaoi.gasky('@sky.lis',
                outimages='sky.fits',
                fl_vardq='yes',
                fl_dqprop='yes',
                flatimg=directory + flat_name)
    shutil.move('sky.fits', directory + 'sky.fits')

    gsaoi.gareduce('@obj.lis',
                   fl_vardq='yes',
                   fl_dqprop='yes',
                   fl_dark='no',
                   calpath=directory,
                   fl_sky='yes',
                   skyimg=directory + 'sky.fits',
                   fl_flat='yes',
                   flatimg=flat_name)

    #util.rmall(['obj.lis','sky.lis','flat.lis', 'all.lis'])

    for i in sci_l:
        for k in range(4):

            iraf.imcopy('rg' + i + '[' + str(k + 1) + '][inherit+]',
                        'rg' + i.replace('.fits',
                                         str(k + 1) + '.fits'))
            #add in line to reflect the x-axis --- note I do not correct the WCS at all!!!!
            iraf.imcopy('rg' + i.replace('.fits',
                                         str(k + 1) + '.fits[-*,*]'),
                        'rg' + i.replace('.fits',
                                         str(k + 1) + '.fits'))
            shutil.move(
                'rg' + i.replace('.fits',
                                 str(k + 1) + '.fits'), clean_dir + 'rg' +
                i.replace('.fits', '_' + str(k + 1) + '.fits'))
            shutil.copy('rg' + i, directory + 'rg' + i)
        os.remove('rg' + i)
Exemple #4
0
	def __del__(self):
		rmall(self.tempdir)
def darPlusDistortion(inputFits, outputRoot, xgeoim=None, ygeoim=None):
    """
    Create lookup tables (stored as FITS files) that can be used
    to correct DAR. Optionally, the shifts due to DAR can be added
    to existing NIRC2 distortion lookup tables if the xgeoim/ygeoim
    input parameters are set.

    Inputs:
    inputFits - a NIRC2 image for which to determine the DAR correction
    outputRoot - the root name for the output. This will be used as the
        root name of two new images with names, <outputRoot>_x.fits and 
        <outputRoot>_y.fits.

    Optional Inputs:
    xgeoim/ygeoim - FITS images used in Drizzle distortion correction
        (lookup tables) will be modified to incorporate the DAR correction.
        The order of the correction is 1. distortion, 2. DAR.
        
    """
    # Get the size of the image and the half-points
    hdr = pyfits.getheader(inputFits)
    imgsizeX = float(hdr['NAXIS1'])
    imgsizeY = float(hdr['NAXIS2'])
    halfX = round(imgsizeX / 2.0)
    halfY = round(imgsizeY / 2.0)

    # First get the coefficients
    (pa, darCoeffL, darCoeffQ) = nirc2dar(inputFits)
    #(a, b) = nirc2darPoly(inputFits)

    # Create two 1024 arrays (or read in existing ones) for the
    # X and Y lookup tables
    if ((xgeoim == None) or (xgeoim == '')):
        x = np.zeros((imgsizeY, imgsizeX), dtype=float)
    else:
        x = pyfits.getdata(xgeoim)

    if ((ygeoim == None) or (ygeoim == '')):
        y = np.zeros((imgsizeY, imgsizeX), dtype=float)
    else:
        y = pyfits.getdata(ygeoim)

    # Get proper header info.
    fits = pyfits.open(inputFits)

    axisX = np.arange(imgsizeX, dtype=float) - halfX
    axisY = np.arange(imgsizeY, dtype=float) - halfY
    xcoo2d, ycoo2d = np.meshgrid(axisX, axisY)

    xnew1 = xcoo2d + x
    ynew1 = ycoo2d + y

    # Rotate coordinates clockwise by PA so that zenith is along +ynew2
    # PA = parallactic angle (angle from +y to zenith going CCW)
    sina = math.sin(pa)
    cosa = math.cos(pa)

    xnew2 = xnew1 * cosa + ynew1 * sina
    ynew2 = -xnew1 * sina + ynew1 * cosa

    # Apply DAR correction along the y axis
    xnew3 = xnew2
    ynew3 = ynew2 * (1 + darCoeffL) + ynew2 * np.abs(ynew2) * darCoeffQ

    # Rotate coordinates counter-clockwise by PA back to original
    xnew4 = xnew3 * cosa - ynew3 * sina
    ynew4 = xnew3 * sina + ynew3 * cosa

    #xnew2 = a[0] + a[1]*xnew1 + a[2]*ynew1 + \
    #        a[3]*xnew1**2 + a[4]*xnew1*ynew1 + a[5]*ynew1**2
    #ynew2 = b[0] + b[1]*xnew1 + b[2]*ynew1 + \
    #        b[3]*xnew1**2 + b[4]*xnew1*ynew1 + b[5]*ynew1**2

    x = xnew4 - xcoo2d
    y = ynew4 - ycoo2d

    xout = outputRoot + '_x.fits'
    yout = outputRoot + '_y.fits'
    util.rmall([xout, yout])
    fits[0].data = x
    fits[0].writeto(xout, output_verify='silentfix')
    fits[0].data = y
    fits[0].writeto(yout, output_verify='silentfix')

    return (xout, yout)
Exemple #6
0
def red_dir(directory,clean_dir, sky_key='sky', flat_key='Domeflat', sci_keys= ['Wd 2 pos 1','Wd 2 pos 2', 'Wd 2 pos 3', 'Wd 2 pos 4'], frame_list = None):

    '''
    Note, must be ran from pyraf interavtive terminal
    perform reduction on directory given
    directory must be full path name
    sky_key is header keywaord for sky frames
    dome_key is header keyword for domes
    sci_coadds is the minimum number of coadds required for an image to be considered a science image
    '''

    
    #os.chdir(directory)
    print 'Reduction being performed in ', directory
    
    if frame_list == None:
        frame_list = glob.glob(directory+'*.fits')
        dir_ap = ''
        for i in range(len(frame_list)):
            frame_list[i] = frame_list[i].replace('.fits','')
    else:
        dir_ap=directory
            
  
    
    #go through the fits files and make 3 lists, one of skies, one of domes one of science frames

    
    sci_f = open('obj.lis', 'w')
    dome_f = open('flat.lis', 'w')
    all_f = open('all.lis', 'w')
    sky_f = open('sky.lis','w')
    dome_list = []
    sci_l = []
    
    
    for i in frame_list:
        #import pdb; pdb.set_trace()
        print >> all_f, dir_ap+i+'.fits'
        head = fits.getheader(dir_ap+i+'.fits')
        if head['OBJECT'] == sky_key:
            print >> sky_f, dir_ap+'g'+i+'.fits'
        elif head['OBJECT']==flat_key:
            print >> dome_f, dir_ap+'g'+i+'.fits'
            dome_list.append(i)
        else:
            for j in sci_keys:
                if head['OBJECT'].replace(' ','') == j:
                    print >> sci_f, dir_ap+'g'+i+'.fits'
                    sci_l.append(i+'.fits')
    if len(sci_l)==0:
        print 'No science frames found in directory'
        import pdb; pdb.set_trace()
            

    sky_f.close()
    sci_f.close()
    dome_f.close()
    all_f.close()

    

    from pyraf.iraf import gemini
    from pyraf.iraf import gsaoi
    from pyraf import iraf 
    
    
    gemini.unlearn()
    gsaoi.unlearn()

    #raw_dir = util.getcwd()
    #prep_dir = raw_dir+'g'
    #print raw_dir

    util.rmall(['gaprep.log'])
    print 'Arguements for gaprepare', '@all.lis', directory+'g' 
    gsaoi.gaprepare('@all.lis',outpref=directory+'g',fl_vardq='yes', logfile='gaprep.log')
    
    

    gsaoi.gaflat('@flat.lis', outsufx='flat', fl_vardq='yes')
    flat_name=  'g'+dome_list[0]+"_flat.fits"
    shutil.move('g'+dome_list[0]+"_flat.fits", directory+'g'+dome_list[0]+"_flat.fits")
    
    
    #print flat_name
    
    #gsaoi.gareduce('@sky.lis', rawpath=directory, gaprep_pref = directory+'g',calpath=directory, fl_flat='yes', flatimg=flat_name)
    gsaoi.gasky('@sky.lis', outimages='sky.fits', fl_vardq='yes', fl_dqprop='yes', flatimg=directory+flat_name)
    shutil.move('sky.fits', directory+'sky.fits')
    
    gsaoi.gareduce('@obj.lis',fl_vardq='yes', fl_dqprop='yes', fl_dark='no',calpath=directory, fl_sky='yes',skyimg=directory+'sky.fits',  fl_flat='yes',flatimg=flat_name)

    
    #util.rmall(['obj.lis','sky.lis','flat.lis', 'all.lis'])

    for i in sci_l:
        for k in range(4):
            
            iraf.imcopy('rg'+i+'['+str(k+1)+'][inherit+]' , 'rg'+i.replace('.fits',str(k+1)+'.fits'))
            #add in line to reflect the x-axis --- note I do not correct the WCS at all!!!!
            iraf.imcopy('rg'+i.replace('.fits',str(k+1)+'.fits[-*,*]'), 'rg'+i.replace('.fits',str(k+1)+'.fits'))
            shutil.move('rg'+i.replace('.fits',str(k+1)+'.fits'), clean_dir+'rg'+i.replace('.fits','_'+str(k+1)+'.fits'))
            shutil.copy('rg'+i, directory+'rg'+i)
        os.remove('rg'+i)
def makesky_lp(files, nite, wave, number=3, rejectHsigma=None):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses 3 skies combined (set by number keyword)."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]

    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw) + '\n')
    open(_nlis, 'w').write('\n'.join(skies) + '\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot)

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0

    sidx = np.argsort(angles)

    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to
    # average every NN files.
    print 'makesky_lp: Combining to make skies.'
    startIdx = number / 2
    stopIdx = len(sidx) - (number / 2)
    for i in range(startIdx, stopIdx):
        sky = 'sky%.1f' % (angles[i])
        skyFits = skyDir + sky + '.fits'
        util.rmall([skyFits])

        # Take NN images
        start = i - (number / 2)
        stop = start + number
        list = [file for file in files[start:stop]]
        short = [file for file in files[start:stop]]
        angleTmp = angles[start:stop]

        # Make short names
        for j in range(len(list)):
            tmp = (short[j]).rsplit('/', 1)
            short[j] = tmp[len(tmp) - 1]

        print '%s: %s' % (sky, " ".join(short))
        f_log.write('%s:' % sky)
        for j in range(len(short)):
            f_log.write(' %s' % short[j])
        for j in range(len(angleTmp)):
            f_log.write(' %6.1f' % angleTmp[j])
        f_log.write('\n')

        ir.unlearn('imcombine')
        ir.imcombine.combine = 'median'

        if (rejectHsigma == None):
            ir.imcombine.reject = 'none'
            ir.imcombine.nlow = 1
            ir.imcombine.nhigh = 1
        else:
            ir.imcombine.reject = 'sigclip'
            ir.imcombine.lsigma = 100
            ir.imcombine.hsigma = rejectHsigma
            ir.imcombine.zero = 'median'

        ir.imcombine.logfile = ''
        ir.imcombine(','.join(list), skyFits)

        ir.hedit(skyFits,
                 'SKYCOMB',
                 '%s: %s' % (sky, ' '.join(short)),
                 add='yes',
                 show='no',
                 verify='no')

        f_txt.write('%13s %8.3f\n' % (sky, angles[i]))

    f_txt.close()
    f_log.close()
	def __del__(self):
		"""Destructor. Cleans up as this object is destroyed."""
		rmall(self.work_dir)
def makesky_fromsci(files, nite, wave):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ', skyDir
    print 'wave dir: ', waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # Make list for combinng. Reset the skyDir to an IRAF variable.
    ir.set(skydir=skyDir)
    f_on = open(skylist, 'w')
    for ii in range(len(nn)):
        nn_new = nn[ii].replace(skyDir, "skydir$")
        f_on.write(nn_new + '\n')
    f_on.close()

    # Calculate some sky statistics, but reject high (star-like) pixels
    sky_mean = np.zeros([len(skies)], dtype=float)
    sky_std = np.zeros([len(skies)], dtype=float)

    text = ir.imstat("@" + skylist,
                     fields='midpt,stddev',
                     nclip=10,
                     lsigma=10,
                     usigma=3,
                     format=0,
                     Stdout=1)

    for ii in range(len(nn)):
        fields = text[ii].split()
        sky_mean[ii] = float(fields[0])
        sky_std[ii] = float(fields[1])

    sky_mean_all = sky_mean.mean()
    sky_std_all = sky_std.mean()

    # Upper threshold above which we will ignore pixels when combining.
    hthreshold = sky_mean_all + 3.0 * sky_std_all

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'sigclip'
    ir.imcombine.mclip = 'yes'
    ir.imcombine.hsigma = 2
    ir.imcombine.lsigma = 10
    ir.imcombine.hthreshold = hthreshold

    ir.imcombine('@' + skylist, output)
def makesky(files, nite, wave, skyscale=1):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ', skyDir
    print 'wave dir: ', waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # scale skies to common median
    if skyscale:
        _skylog = skyDir + 'sky_scale.log'
        util.rmall([_skylog])
        f_skylog = open(_skylog, 'w')

        sky_mean = np.zeros([len(skies)], dtype=float)

        for i in range(len(skies)):
            text = ir.imstat(nn[i],
                             fields='mean',
                             nclip=4,
                             lsigma=10,
                             usigma=10,
                             format=0,
                             Stdout=1)
            sky_mean[i] = float(text[0])

        sky_all = sky_mean.mean()
        sky_scale = sky_all / sky_mean

        for i in range(len(skies)):
            ir.imarith(nn[i], '*', sky_scale[i], nsc[i])

            skyf = nn[i].split('/')
            print('%s   skymean=%10.2f   skyscale=%10.2f' %
                  (skyf[len(skyf) - 1], sky_mean[i], sky_scale[i]))
            f_skylog.write('%s   %10.2f  %10.2f\n' %
                           (nn[i], sky_mean[i], sky_scale[i]))

        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nsc) + '\n')
        f_on.close()

        #skylist = skyDir + 'scale????.fits'
        f_skylog.close()
    else:
        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nn) + '\n')
        f_on.close()

        #skylist = skyDir + 'n????.fits'

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'none'
    ir.imcombine.nlow = 1
    ir.imcombine.nhigh = 1

    ir.imcombine('@' + skylist, output)
def makesky_lp2(files, nite, wave):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses only 2 skies combined."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]

    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw) + '\n')
    open(_nlis, 'w').write('\n'.join(skies) + '\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot)

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0

    sidx = np.argsort(angles)

    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to
    # average every 3 files.
    print 'makesky_lp: Combining to make skies.'
    for i in range(1, len(sidx)):
        angav = (angles[i] + angles[i - 1]) / 2.
        sky = 'sky%.1f' % (angav)
        skyFits = skyDir + sky + '.fits'
        util.rmall([skyFits])

        # Average 2 images
        list = [file for file in files[i - 1:i + 1]]
        short = [file for file in files[i - 1:i + 1]]

        # Make short names
        for j in range(len(list)):
            tmp = (short[j]).rsplit('/', 1)
            short[j] = tmp[len(tmp) - 1]

        print '%s: %s %s' % (sky, short[0], short[1])
        f_log.write('%s: %s %s  %6.1f %6.1f\n' %
                    (sky, short[0], short[1], angles[i - 1], angles[i]))

        ir.unlearn('imcombine')
        ir.imcombine.combine = 'average'
        ir.imcombine.reject = 'none'
        ir.imcombine.nlow = 1
        ir.imcombine.nhigh = 1
        ir.imcombine.logfile = ''
        ir.imcombine(list[1] + ',' + list[0], skyFits)

        ir.hedit(skyFits,
                 'SKYCOMB',
                 '%s: %s %s' % (sky, short[0], short[1]),
                 add='yes',
                 show='no',
                 verify='no')

        f_txt.write('%13s %8.3f\n' % (sky, angav))

    f_txt.close()
    f_log.close()
Exemple #12
0
def makesky_lp(files, nite, wave, number=3, rejectHsigma=None):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses 3 skies combined (set by number keyword)."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]
    
    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw)+'\n')
    open(_nlis, 'w').write('\n'.join(skies)+'\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) 

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0
    
    sidx = np.argsort(angles)
    
    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to 
    # average every NN files.
    print 'makesky_lp: Combining to make skies.'
    startIdx = number / 2
    stopIdx = len(sidx) - (number / 2)
    for i in range(startIdx, stopIdx):
	sky = 'sky%.1f' % (angles[i])
	skyFits = skyDir + sky + '.fits'
	util.rmall([skyFits])

	# Take NN images
        start = i - (number/2)
        stop = start + number
	list = [file for file in files[start:stop]]
	short = [file for file in files[start:stop]]
        angleTmp = angles[start:stop]

	# Make short names
	for j in range(len(list)):
	    tmp = (short[j]).rsplit('/', 1)
	    short[j] = tmp[len(tmp)-1]

	print '%s: %s' % (sky, " ".join(short))
        f_log.write('%s:' % sky)
        for j in range(len(short)):
            f_log.write(' %s' % short[j])
	for j in range(len(angleTmp)):
            f_log.write(' %6.1f' % angleTmp[j])
        f_log.write('\n')

	ir.unlearn('imcombine')
	ir.imcombine.combine = 'median'

        if (rejectHsigma == None):
            ir.imcombine.reject = 'none'
            ir.imcombine.nlow = 1
            ir.imcombine.nhigh = 1
        else:
            ir.imcombine.reject = 'sigclip'
            ir.imcombine.lsigma = 100
            ir.imcombine.hsigma = rejectHsigma
            ir.imcombine.zero = 'median'

	ir.imcombine.logfile = ''
	ir.imcombine(','.join(list), skyFits)
	
	ir.hedit(skyFits, 'SKYCOMB', 
		 '%s: %s' % (sky, ' '.join(short)), 
		 add='yes', show='no', verify='no')
	
	f_txt.write('%13s %8.3f\n' % (sky, angles[i]))
	
    f_txt.close()
    f_log.close()
Exemple #13
0
def makesky(files, nite, wave, skyscale=1):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")


    # scale skies to common median
    if skyscale:
        _skylog = skyDir + 'sky_scale.log'
        util.rmall([_skylog])
        f_skylog = open(_skylog, 'w')

        sky_mean = np.zeros([len(skies)], dtype=float)

        for i in range(len(skies)):
            text = ir.imstat(nn[i], fields='mean', nclip=4, 
                         lsigma=10, usigma=10, format=0, Stdout=1)
            sky_mean[i] = float(text[0])

        sky_all = sky_mean.mean()
        sky_scale = sky_all/sky_mean

        for i in range(len(skies)):
            ir.imarith(nn[i], '*', sky_scale[i], nsc[i])

	    skyf = nn[i].split('/')
	    print('%s   skymean=%10.2f   skyscale=%10.2f' % 
	          (skyf[len(skyf)-1], sky_mean[i],sky_scale[i]))
            f_skylog.write('%s   %10.2f  %10.2f\n' % 
                           (nn[i], sky_mean[i], sky_scale[i]))

        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nsc) + '\n')
        f_on.close()

        #skylist = skyDir + 'scale????.fits'
        f_skylog.close()
    else:
        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nn) + '\n')
        f_on.close()

        #skylist = skyDir + 'n????.fits' 

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'none'
    ir.imcombine.nlow = 1
    ir.imcombine.nhigh = 1

    ir.imcombine('@' + skylist, output)
Exemple #14
0
def makesky_fromsci(files, nite, wave):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # Make list for combinng. Reset the skyDir to an IRAF variable.
    ir.set(skydir=skyDir)
    f_on = open(skylist, 'w')
    for ii in range(len(nn)):
        nn_new = nn[ii].replace(skyDir, "skydir$")
        f_on.write(nn_new + '\n')
    f_on.close()

    # Calculate some sky statistics, but reject high (star-like) pixels
    sky_mean = np.zeros([len(skies)], dtype=float)
    sky_std = np.zeros([len(skies)], dtype=float)

    text = ir.imstat("@" + skylist, fields='midpt,stddev', nclip=10, 
                     lsigma=10, usigma=3, format=0, Stdout=1)

    for ii in range(len(nn)):
        fields = text[ii].split()
        sky_mean[ii] = float(fields[0])
        sky_std[ii] = float(fields[1])

    sky_mean_all = sky_mean.mean()
    sky_std_all = sky_std.mean()

    # Upper threshold above which we will ignore pixels when combining.
    hthreshold = sky_mean_all + 3.0 * sky_std_all

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'sigclip'
    ir.imcombine.mclip = 'yes'
    ir.imcombine.hsigma = 2
    ir.imcombine.lsigma = 10
    ir.imcombine.hthreshold = hthreshold

    ir.imcombine('@' + skylist, output)
Exemple #15
0
def makesky_lp2(files, nite, wave):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses only 2 skies combined."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]
    
    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw)+'\n')
    open(_nlis, 'w').write('\n'.join(skies)+'\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) 

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0
    
    sidx = np.argsort(angles)
    
    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to 
    # average every 3 files.
    print 'makesky_lp: Combining to make skies.'
    for i in range(1, len(sidx)):
        angav = (angles[i] + angles[i-1])/2.
	sky = 'sky%.1f' % (angav)
	skyFits = skyDir + sky + '.fits'
	util.rmall([skyFits])

	# Average 2 images
	list = [file for file in files[i-1:i+1]]
	short = [file for file in files[i-1:i+1]]

	# Make short names
	for j in range(len(list)):
	    tmp = (short[j]).rsplit('/', 1)
	    short[j] = tmp[len(tmp)-1]
	    
	print '%s: %s %s' % (sky, short[0], short[1])
	f_log.write('%s: %s %s  %6.1f %6.1f\n' %
		    (sky, short[0], short[1], 
		     angles[i-1], angles[i]))

	ir.unlearn('imcombine')
	ir.imcombine.combine = 'average'
	ir.imcombine.reject = 'none'
	ir.imcombine.nlow = 1
	ir.imcombine.nhigh = 1
	ir.imcombine.logfile = ''
	ir.imcombine(list[1]+','+list[0], skyFits)
	
	ir.hedit(skyFits, 'SKYCOMB', 
		 '%s: %s %s' % (sky, short[0], short[1]), 
		 add='yes', show='no', verify='no')
	
	f_txt.write('%13s %8.3f\n' % (sky, angav))
	
    f_txt.close()
    f_log.close()