from util import savePLY, saveVoxels

tfrecord_filename = sys.argv[1]
voxel_scale = float(sys.argv[2])  #0.047 or 0.094 or 0.188

it = tf_record_iterator(tfrecord_filename)
if sys.argv[1].startswith('vis'):
    foldername = os.path.dirname(tfrecord_filename)
else:
    foldername = '.'
n = next(it)
for k in ['input_sdf', 'target_df', 'prediction_df']:
    if k in n:
        A = n[k]
        s = n[k + '/dim']
        sdf = A.reshape(s).copy()
        #        sdf = skimage.draw.ellipsoid(6,10,16,levelset=True)
        print('Loaded sdf', sdf.shape, sdf.min(), sdf.max())
        vertices, faces, normals, values = skimage.measure.marching_cubes_lewiner(
            sdf, 1)
        V = numpy.ones((len(vertices), 6)) * 255
        V[:, :3] = vertices * voxel_scale
        savePLY(
            '%s/%d_%s.ply' % (foldername, int(round(voxel_scale, 2) * 100), k),
            V, faces)
        saveVoxels('%s/voxel_%d_%s.ply' %
                   (foldername, int(round(voxel_scale, 2) * 100), k),
                   sdf,
                   voxel_scale,
                   cross_section=True)
Exemple #2
0
            pcd_with_labels[:, 6] = instance_labels
            pcd_with_labels[:, 7] = class_labels
            pcd_with_labels = point_cloud2.create_cloud(
                msg.header, fields, pcd_with_labels)
            bag.write('laser_cloud_surround', pcd_with_labels, t=t)

            dt = (msg.header.stamp.to_sec() - init_time)
            print("t:%.2f" % dt, pcd.shape, count_msg, len(instance_set),
                  'instances', numpy.sum(instance_labels > 0), 'labels')


rospy.init_node('bag_converter')
listener = tf.TransformListener()
subscribed_topic = '/full_cloud_projected'
global_cloud_sub = rospy.Subscriber(subscribed_topic, PointCloud2,
                                    process_cloud)
print('Listening to %s ...' % subscribed_topic)
rospy.spin()

if velodyne_to_faro is None:
    global_cloud = numpy.array(global_cloud)
    print(global_cloud.shape)
    global_cloud = numpy.hstack(
        (global_cloud, numpy.zeros((len(global_cloud), 3))))
    print(global_cloud.shape)
    global_cloud = downsample(global_cloud, 0.05)
    print(global_cloud.shape)
    savePLY('viz/global_cloud.ply', global_cloud)
else:
    bag.close()
points = points[:, :6]
print(len(points[0, :]))

print('Loaded', len(points), 'points')

points_XYZ = points[:, [0, 2, 1]]  #swap Y&Z coordinates

synthetic_points_XYZ = fill_holes(points_XYZ,
                                  max_circumradius=0.7,
                                  max_ratio_radius_area=0.02,
                                  distance=0.01)

print('Created', len(synthetic_points_XYZ), 'synthetic points')

synthetic_points_XYZ = synthetic_points_XYZ[:, [0, 2,
                                                1]]  #swap Y&Z coordinates

synthetic_points = numpy.zeros((len(synthetic_points_XYZ), 6))

synthetic_points_color = points[:, 3:6].mean(axis=0)

print("Apply color", synthetic_points_color)

synthetic_points[:, :3] = synthetic_points_XYZ

synthetic_points[:, 3:6] = synthetic_points_color

result_points = numpy.vstack((synthetic_points, points))

savePLY('./Data/02_pettit_input_hole_filled.ply', result_points)
Exemple #4
0
        tuple(p) for p in numpy.round((cloud[:, :3] / resolution)).astype(int)
    ]
    voxel_set = set()
    downsampled_cloud = []
    for i in range(len(cloud)):
        if not voxel_coordinates[i] in voxel_set:
            voxel_set.add(voxel_coordinates[i])
            downsampled_cloud.append(cloud[i])
    return numpy.array(downsampled_cloud)


dirname = sys.argv[1]  #directory containing separate raw scans
building_name = sys.argv[2]
output_dir = dirname + "/.."
scans = []
filelist = []
filelist.extend(glob.glob("%s/*.ply" % dirname))
filelist = sorted(filelist)
for s in filelist:
    pcd, _ = loadPLY(s)
    print(s, pcd.shape)
    scans.append(pcd)

for L in range(1, len(scans)):
    for l in itertools.combinations(range(len(scans)), L):
        stacked = numpy.vstack([scans[i] for i in l])
        stacked = downsample(stacked, 0.01)
        output_file = '%s/%s_real%s.ply' % (output_dir, building_name, ''.join(
            [str(i) for i in l]))
        savePLY(output_file, stacked)
import numpy
from util import savePLY
numpy.random.seed(0)

#create point cloud from wall (XZ plane)
N = 10000
pcd = numpy.zeros((N, 6))
pcd[:,0] = numpy.around(numpy.random.random(N), decimals=3) #random X coordinate
pcd[:,2] = numpy.around(numpy.random.random(N), decimals=3) #random Z coordinate
pcd[:,3:6] = 255 #white color
savePLY('wall.ply', pcd)

#create artificial hole
hole_position = [0.75, 0, 0.75]
hole_radius = 0.2
r = numpy.sqrt((pcd[:,0]-hole_position[0])**2 + (pcd[:,2]-hole_position[2])**2)
savePLY('wall_with_hole.ply', pcd[r > hole_radius, :])

#fill in hole with color
pcd_color = pcd.copy()
pcd_color[r <= hole_radius, 3:6] = [255, 0, 0]
savePLY('wall_with_color.ply', pcd_color)

#add noise
pcd_noise = pcd.copy()
pcd_noise[:,:3] += numpy.random.randn(N,3)*0.01
savePLY('wall_with_noise.ply', pcd_noise)
Exemple #6
0
def fit_plane_LSE_RANSAC(points, iters=100, inlier_thresh=0.05):
    # points: Nx4 homogeneous 3d points
    # return:
    #   plane: 1d array of four elements [a, b, c, d] of ax+by+cz+d = 0
    #   inlier_list: 1d array of size N of inlier points

    # make into homogeneous coordinates
    color = points[:, 3:]
    p = np.hstack((points[:, :3], np.ones((points.shape[0], 1))))
    fitted = np.zeros((0, points.shape[1]))

    for _ in range(100):
        if points.shape[0] < 500:
            break

        max_inlier_num = -1
        max_inlier_list = None

        N = points.shape[0]
        assert N >= 3

        for i in range(iters):
            chose_id = np.random.choice(N, 3, replace=False)
            chose_points = p[chose_id, :]
            tmp_plane = fit_plane_LSE(chose_points)

            dists = get_point_dist(p, tmp_plane)
            tmp_inlier_list = np.where(dists < inlier_thresh)[0]
            tmp_inliers = p[tmp_inlier_list, :]
            num_inliers = tmp_inliers.shape[0]
            if num_inliers > max_inlier_num:
                max_inlier_num = num_inliers
                max_inlier_list = tmp_inlier_list

        final_points = p[max_inlier_list, :]
        plane = fit_plane_LSE(final_points)
        # assign random color to segmented plane
        #c = np.ones((final_points.shape[0],3)) * np.random.randint(256, size=(1,3))
        c = points[max_inlier_list, 3:]
        sav = np.hstack((final_points[:, :3], c))
        # set color as mean of plane color
        color = np.mean(c, 0)
        # points to be filled
        pts = sav[:, [0, 2, 1]]
        hole = fill_holes(pts,
                          distance=0.05,
                          max_circumradius=0.2,
                          max_ratio_radius_area=0.1)
        hole = hole[:, [0, 2, 1]]
        # add color to hole points
        hole = np.hstack((hole, np.ones(hole.shape) * color))
        # add to already fitted point cloud
        fitted = np.concatenate((fitted, sav, hole))
        fit_variance = np.var(get_point_dist(final_points, plane))
        #print('RANSAC fit variance: %f' % fit_variance)

        dists = get_point_dist(p, plane)

        select_thresh = inlier_thresh * 1

        inlier_list = np.where(dists < select_thresh)[0]

        # remove fitted points from original point cloud
        points = np.delete(points, max_inlier_list, 0)
        p = np.delete(p, max_inlier_list, 0)

    util.savePLY('plane_fitted.ply', fitted)
    return points
Exemple #7
0
            output_pc[i, 2] = (v_f[i] / density / bb1.half_xyz[2] -
                               1.0) * bb1.half_xyz[2]
            #RGB color
            output_pc[i, 3:6] = filled_image[v_f[i], u_f[i], :]
        pstack = np.array(pstack)
        q, _ = flann.nn(x.astype(np.int32),
                        pstack.astype(np.int32),
                        1,
                        algorithm='kdtree_simple')
        for i in range(len(idx)):
            min_v, min_u = x[q[i]]
            output_pc[idx[i], 1] = depth_image[min_v, min_u]
        output_pc[:, :3] += center
        #flip z axis
        output_pc[:, 2] = -output_pc[:, 2]
        original_pc, _ = loadPLY('../input/%s_input.ply' % test_filename)
        stacked_pc = list(original_pc)
        voxel_resolution = 0.05
        original_voxels = set([
            tuple(k) for k in np.round((original_pc[:, :3] /
                                        voxel_resolution)).astype(int)
        ])
        added_voxels = [
            tuple(k) for k in np.round((output_pc[:, :3] /
                                        voxel_resolution)).astype(int)
        ]
        for i in range(len(added_voxels)):
            if not added_voxels[i] in original_voxels:
                stacked_pc.append(output_pc[i])
        savePLY('%s_output.ply' % test_filename, stacked_pc)
Exemple #8
0
        tf.train.Feature(int64_list=tf.train.Int64List(value=voxels.shape)),
        'target_df':
        tf.train.Feature(float_list=tf.train.FloatList(
            value=voxels.flatten().tolist()))
    }
    example = tf.train.Example(features=tf.train.Features(feature=out_feature))
    writer.write(example.SerializeToString())
    print('Saved to %s' % sys.argv[2])

saveVoxels('/home/jd/Desktop/voxels.ply', voxels, voxel_scale, offset)
vertices, faces, normals, values = skimage.measure.marching_cubes_lewiner(
    voxels, 1)
V = numpy.zeros((len(vertices), 6)) * 255
V[:, :3] = vertices * voxel_scale
V[:, :3] += offset
savePLY('/home/jd/Desktop/marching_cubes.ply', V, faces)

sys.exit(1)

import mesh_to_sdf
import trimesh
import matplotlib.pyplot as plt

voxels = mesh_to_sdf.mesh_to_voxels(mesh, 100, pad=False)
print('voxels', voxels.shape, voxels.min(), voxels.max())

vertices, faces, normals, values = skimage.measure.marching_cubes_lewiner(
    voxels, 0)
V = np.zeros((len(vertices), 6)) * 255
V[:, :3] = vertices * voxel_scale
savePLY('/home/jd/Desktop/voxels.ply', V, faces)
Exemple #9
0
import numpy
import sys
from util import loadPLY, savePLY
import os

gt_filename = sys.argv[1]  #ground truth combined point cloud
building_name = sys.argv[2]  #mason_east
pcd, _ = loadPLY(gt_filename)
print(gt_filename, pcd.shape)
minDims = pcd[:, :3].min(axis=0)
maxDims = pcd[:, :3].max(axis=0)

N = 20
for i in range(N):
    #create an interval between 10% and 90% of extent
    r1, r2 = numpy.random.random(2) * 0.8 + 0.1
    x1 = minDims[0] + (maxDims[0] - minDims[0]) * min(r1, r2)
    x2 = minDims[0] + (maxDims[0] - minDims[0]) * max(r1, r2)
    r1, r2 = numpy.random.random(2) * 0.8 + 0.1
    z1 = minDims[2] + (maxDims[2] - minDims[2]) * min(r1, r2)
    z2 = minDims[2] + (maxDims[2] - minDims[2]) * max(r1, r2)
    xmask = numpy.logical_or(pcd[:, 0] < x1, pcd[:, 0] > x2)
    zmask = numpy.logical_or(pcd[:, 2] < z1, pcd[:, 2] > z2)
    output = pcd[numpy.logical_or(xmask, zmask)]
    output_file = '%s/%s_synthetic%02d.ply' % (os.path.dirname(gt_filename),
                                               building_name, i)
    savePLY(output_file, output)