def save_mesh(self, opt): with torch.no_grad(): var = self.graph_forward(opt) util.save_mesh(opt, self, var.vertices)
assert max(heights) - height <= data.stereo_downscale_factor if depth is not None: depth = depth[:height, :width] if alpha is not None: alpha = alpha[:height, :width] if normals is not None: normals = normals[:height, :width, :] print('Initialized data in {0} seconds'.format(toc - tic)) tic = time.time() A, b = form_poisson_equation(height, width, alpha, normals, depth_weight, depth) toc = time.time() print('Set up linear system in {0} seconds'.format(toc - tic)) tic = time.time() print('Solving...') solution = lsqr(A, b) x = solution[0] depth = x.reshape(height, width) toc = time.time() print('Solve complete in {0} seconds'.format(toc - tic)) print('Save mesh to {0}'.format(data.mesh_ply.format(mode))) save_mesh(K_right, width, height, albedo, normals, depth, alpha, data.mesh_ply.format(mode)) print('done :)')
assert max(heights) - height <= data.stereo_downscale_factor if depth is not None: depth = depth[:height, :width] if alpha is not None: alpha = alpha[:height, :width] if normals is not None: normals = normals[:height, :width, :] print 'Initialized data in {0} seconds'.format(toc - tic) tic = time.time() A, b = form_poisson_equation( height, width, alpha, normals, depth_weight, depth) toc = time.time() print 'Set up linear system in {0} seconds'.format(toc - tic) tic = time.time() print 'Solving...' solution = lsqr(A, b) x = solution[0] depth = x.reshape(height, width) toc = time.time() print 'Solve complete in {0} seconds'.format(toc - tic) print 'Save mesh to {0}'.format(data.mesh_ply.format(mode)) save_mesh(K_right, width, height, albedo, normals, depth, alpha, data.mesh_ply.format(mode)) print 'done :)'