def sum(self, name: str = "") -> Money: if name: return u.sum([ u.parse_money(a["amount"]) for a in self if a["name"].startswith(name) ]) return u.sum([u.parse_money(a["amount"]) for a in self])
def polyR(s, p): """ :param s: ``Signal`` :param p: ``poly.Polynomial`` :return: New signal that is ``s`` transformed by ``p`` interpreted as a polynomial in *R*. """ # range(10, -1, -1) counts down from 10 to 0, inclusive return util.sum([c * Rn(s, k) \ for (c, k) in zip(p.coeffs, range(p.order, -1, -1))])
def polyR(s, p): """ @param s: C{Signal} @param p: C{poly.Polynomial} @return: New signal that is C{s} transformed by C{p} interpreted as a polynomial in I{R}. """ # range(10, -1, -1) counts down from 10 to 0, inclusive return util.sum([c * Rn(s, k) \ for (c, k) in zip(p.coeffs, range(p.order, -1, -1))])
def test_closure_lambda(): print('[py/closure]') sumFunc = util.sum() box = [1, 2, 3, 4, 5, 6] for val in box: print(sumFunc(val), end=' ') print() print('[py/lambda]') # lambda返回的值作为该元素的权值,sort将按照权值大小进行排序 # 奇数为False,偶数为True,故奇数在前 print(sorted(box, key=lambda x: x % 2 == 0))
def getRect(self, x, y): X, Y, space = self.X, self.Y, self.space if type(X) == int: width = float(self.width) / X xp = self.x + width * x elif [list, tuple].__contains__(type(X)): width = float(self.width) * X[x] / sum(X) xp = self.x + float(self.width) * sum(X, 0, x)/sum(X) if type(Y) == int: height = float(self.height) / Y yp = self.y + height * y elif [list, tuple].__contains__(type(Y)): height = float(self.height) * Y[y] / sum(Y) yp = self.y + float(self.height) * sum(Y, 0, y)/sum(Y) rect = Rectangle((xp + space / 2.0, yp + space / 2.0, width - space, height - space)) return rect
import util from my_util import util2 #my_utin is package or folder #util, util2 is module or a file from my_util.util2 import squre as squre_x print(util.sum(1, 2)) #3 print(util2.squre(2)) #4 print(squre_x(3)) #9 #pip install .... #pip uninstall ... #to install package of modules
def softmax(x): exp = sp.exp(x - sp.max(x)) return exp / sp.sum(exp, axis=1, keepdims=True)
def pi_sum(a, b): return sum(lambda x: 1.0 / (x * (x + 2)), a, lambda x: x + 4, b)
def integral(f, a, b, dx): return sum(f, a + dx / 2.0, lambda x: x + dx, b) * dx