def save_metadata(self): try: json_ = {"_col_index": self.col_index, "_col_metadata": self.col_metadata} log.info("RESULTS: Saving Column Metadata to {0}".format(self.log_prefix, self.metadata_file_path)) save_to_JSON(self.metadata_file_path, json_) except Exception, e: log.warning("{0}: Failed to save Column Metadata.".format(self.log_prefix)) log.warning(e) log.warning("{0}: File path was: {1}".format(self.log_prefix, self.metadata_file_path)) raise e
def generate_d3_JSON_ParallelCoords(self, hndl_Res): # Historical Line Graph # Historical Line Graph / Get History Line (history_dates, history_values) = hndl_Res.get_resp_word_raw_values() json_history = [DATA_SERIES_TO_JSON(d,v) for (d,v) in zip(history_dates, history_values)] # Historical Line Graph / Write History Line filePath = get_json_history_path(hndl_Res.file_name) save_to_JSON(filePath, json_history) # Parallel Coordinates # Parallel Coordinates / Get Parallel Coords Points models = {} preds = [] for dt in hndl_Res.get_prediction_dates(): (model_idxs, pred_values) = hndl_Res.get_values_by_row(dt) models.update(dict.fromkeys(model_idxs)) for (md, vl) in zip(model_idxs, pred_values): preds.append({ JSON_MODEL_ID: md, JSON_DATE_KEY: dt_epoch_to_str_Y_M_D(dt), JSON_VALUE_KEY: vl }) # Parallel Coordinates / Write Parallel Coords Points filePath = get_json_predictions_path(hndl_Res.file_name) save_to_JSON(filePath, preds) # Metadata # Metadata / Get Model Metadata for md in models.keys(): models[md] = hndl_Res.get_model_metadata(md) # Metadata / Write Model Metadata filePath = get_json_model_path(hndl_Res.file_name) save_to_JSON(filePath, models)
def generate_d3_JSON_ParallelCoords(self): # Generate 'History' n = 120 # 10 years n_fd = 12 series = util_Tst.create_test_data_correlated_returns(n=n, numDims=1, includeResponse=False) dt = util_Tst.create_monthly_date_range(n=n) vals = series['data'] json_history = [DATA_SERIES_TO_JSON(d,v) for (d,v) in zip(dt, vals)] # Generate Predictions std = np_std(transform_FOD_BackwardLooking(vals,{utl_Trns.FIRST_ORDER_DIFF_TIME:1})) end_val = vals[-1,0] def get_random_prediction_values(per_fd): numPreds = 40 preds = [] for i in xrange(numPreds): preds.append(end_val + normal()*std*sqrt(per_fd)) return (range(numPreds), preds) def get_model_metadata(model_idx): return { JSON_MODEL_ID : model_idx, JSON_MODEL_CONFIDENCE : random(), JSON_MODEL_DESC : 'junkdesc ' + str(model_idx) } end_dt = dt[-1] prd_dt = util_Tst.create_monthly_date_range(n=n_fd+1, startEpoch=end_dt+10000) #hacky, but end of next month models = {} preds = [] for (i, dt) in enumerate(prd_dt): (model_idxs, pred_values) = get_random_prediction_values(i) models.update(dict.fromkeys(model_idxs)) for (md, vl) in zip(model_idxs, pred_values): preds.append({ JSON_MODEL_ID: md, JSON_DATE_KEY: dt_epoch_to_str_Y_M_D(dt), JSON_VALUE_KEY: vl }) for md in models.keys(): models[md] = get_model_metadata(md) # Save data dataName = 'test1' filePath = get_json_history_path(dataName) save_to_JSON(filePath, json_history) filePath = get_json_predictions_path(dataName) save_to_JSON(filePath, preds) filePath = get_json_model_path(dataName) save_to_JSON(filePath, models) # if __name__ == '__main__': # generator = EMF_TestDataGenerator() # generator.generate_d3_JSON_ParallelCoords()