Exemple #1
0
    def get_mention_emb(self, text_emb, text_outputs, mention_starts,
                        mention_ends):
        mention_emb_list = []

        mention_start_emb = tf.gather(text_outputs,
                                      mention_starts)  # [num_mentions, emb]
        mention_emb_list.append(mention_start_emb)

        mention_end_emb = tf.gather(text_outputs,
                                    mention_ends)  # [num_mentions, emb]
        mention_emb_list.append(mention_end_emb)

        mention_width = 1 + mention_ends - mention_starts  # [num_mentions]
        if self.config["use_features"]:
            mention_width_index = mention_width - 1  # [num_mentions]
            mention_width_emb = tf.gather(
                tf.get_variable("mention_width_embeddings", [
                    self.config["max_mention_width"],
                    self.config["feature_size"]
                ]), mention_width_index)  # [num_mentions, emb]
            mention_width_emb = tf.nn.dropout(mention_width_emb, self.dropout)
            mention_emb_list.append(mention_width_emb)

        if self.config["model_heads"]:
            mention_indices = tf.expand_dims(
                tf.range(
                    self.config["max_mention_width"]), 0) + tf.expand_dims(
                        mention_starts, 1)  # [num_mentions, max_mention_width]
            mention_indices = tf.minimum(
                util.shape(text_outputs, 0) - 1,
                mention_indices)  # [num_mentions, max_mention_width]
            mention_text_emb = tf.gather(
                text_emb,
                mention_indices)  # [num_mentions, max_mention_width, emb]
            self.head_scores = util.projection(text_outputs,
                                               1)  # [num_words, 1]
            mention_head_scores = tf.gather(
                self.head_scores,
                mention_indices)  # [num_mentions, max_mention_width, 1]
            mention_mask = tf.expand_dims(
                tf.sequence_mask(mention_width,
                                 self.config["max_mention_width"],
                                 dtype=tf.float32),
                2)  # [num_mentions, max_mention_width, 1]
            mention_attention = tf.nn.softmax(
                mention_head_scores + tf.log(mention_mask),
                dim=1)  # [num_mentions, max_mention_width, 1]
            mention_head_emb = tf.reduce_sum(
                mention_attention * mention_text_emb, 1)  # [num_mentions, emb]
            mention_emb_list.append(mention_head_emb)

        mention_emb = tf.concat(mention_emb_list, 1)  # [num_mentions, emb]
        return mention_emb
Exemple #2
0
    def flatten_emb_by_sentence(self, emb, text_len_mask):
        num_sentences = tf.shape(emb)[0]
        max_sentence_length = tf.shape(emb)[1]

        emb_rank = len(emb.get_shape())
        if emb_rank == 2:
            flattened_emb = tf.reshape(emb,
                                       [num_sentences * max_sentence_length])
        elif emb_rank == 3:
            flattened_emb = tf.reshape(
                emb, [num_sentences * max_sentence_length,
                      util.shape(emb, 2)])
        else:
            raise ValueError("Unsupported rank: {}".format(emb_rank))
        return tf.boolean_mask(flattened_emb, text_len_mask)
Exemple #3
0
    def get_antecedent_scores(self, mention_emb, mention_scores, antecedents,
                              antecedents_len, mention_starts, mention_ends,
                              mention_speaker_ids, genre_emb, k):
        num_mentions = util.shape(mention_emb, 0)
        max_antecedents = util.shape(antecedents, 1)

        feature_emb_list = []

        if self.config["use_metadata"]:
            antecedent_speaker_ids = tf.gather(
                mention_speaker_ids, antecedents)  # [num_mentions, max_ant]
            same_speaker = tf.equal(
                tf.expand_dims(mention_speaker_ids, 1),
                antecedent_speaker_ids)  # [num_mentions, max_ant]
            speaker_pair_emb = tf.gather(
                tf.get_variable("same_speaker_emb",
                                [2, self.config["feature_size"]]),
                tf.to_int32(same_speaker))  # [num_mentions, max_ant, emb]
            feature_emb_list.append(speaker_pair_emb)

            tiled_genre_emb = tf.tile(
                tf.expand_dims(tf.expand_dims(genre_emb, 0), 0),
                [num_mentions, max_antecedents, 1
                 ])  # [num_mentions, max_ant, emb]
            feature_emb_list.append(tiled_genre_emb)

        if self.config["use_features"]:
            target_indices = tf.range(num_mentions)  # [num_mentions]
            mention_distance = tf.expand_dims(
                target_indices, 1) - antecedents  # [num_mentions, max_ant]
            mention_distance_bins = coref_ops.distance_bins(
                mention_distance)  # [num_mentions, max_ant]
            mention_distance_bins.set_shape([None, None])
            mention_distance_emb = tf.gather(
                tf.get_variable("mention_distance_emb",
                                [10, self.config["feature_size"]]),
                mention_distance_bins)  # [num_mentions, max_ant]
            feature_emb_list.append(mention_distance_emb)

        feature_emb = tf.concat(feature_emb_list,
                                2)  # [num_mentions, max_ant, emb]
        feature_emb = tf.nn.dropout(
            feature_emb, self.dropout)  # [num_mentions, max_ant, emb]

        span_emb = tf.expand_dims(mention_emb, 0)
        antecedent_scores = self.rgcn_tagging(span_emb, mention_scores,
                                              feature_emb,
                                              k)  # [1, num_words, 100] ?
        self.scores = antecedent_scores
        '''
    antecedent_emb = tf.gather(mention_emb, antecedents) # [num_mentions, max_ant, emb]
    self.mention_emb_shape = tf.shape(mention_emb)
    self.mention_start_shape = tf.shape(antecedents)
    target_emb_tiled = tf.tile(tf.expand_dims(mention_emb, 1), [1, max_antecedents, 1]) # [num_mentions, max_ant, emb]
    similarity_emb = antecedent_emb * target_emb_tiled # [num_mentions, max_ant, emb]

    pair_emb = tf.concat([target_emb_tiled, antecedent_emb, similarity_emb, feature_emb], 2) # [num_mentions, max_ant, emb]

    with tf.variable_scope("iteration"):
      with tf.variable_scope("antecedent_scoring"):
        antecedent_scores = util.ffnn(pair_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [num_mentions, max_ant, 1]
    antecedent_scores = tf.squeeze(antecedent_scores, 2) # [num_mentions, max_ant]

    antecedent_mask = tf.log(tf.sequence_mask(antecedents_len, max_antecedents, dtype=tf.float32)) # [num_mentions, max_ant]
    antecedent_scores += antecedent_mask # [num_mentions, max_ant]

    antecedent_scores += tf.expand_dims(mention_scores, 1) + tf.gather(mention_scores, antecedents) # [num_mentions, max_ant]
    antecedent_scores = tf.concat([tf.zeros([util.shape(mention_scores, 0), 1]), antecedent_scores], 1) # [num_mentions, max_ant + 1]
    '''
        return antecedent_scores  # [num_mentions, max_ant + 1]
Exemple #4
0
    def get_predictions_and_loss(self, word_emb, char_index, text_len,
                                 speaker_ids, genre, is_training, gold_starts,
                                 gold_ends, cluster_ids):

        self.gold_starts = gold_starts
        self.gold_ends = gold_ends
        self.cluster_ids = cluster_ids

        self.dropout = 1 - (tf.to_float(is_training) *
                            self.config["dropout_rate"])
        self.lexical_dropout = 1 - (tf.to_float(is_training) *
                                    self.config["lexical_dropout_rate"])

        num_sentences = tf.shape(word_emb)[0]
        max_sentence_length = tf.shape(word_emb)[1]

        text_emb_list = [word_emb]

        if self.config["char_embedding_size"] > 0:
            char_emb = tf.gather(
                tf.get_variable(
                    "char_embeddings",
                    [len(self.char_dict), self.config["char_embedding_size"]]),
                char_index
            )  # [num_sentences, max_sentence_length, max_word_length, emb]
            flattened_char_emb = tf.reshape(char_emb, [
                num_sentences * max_sentence_length,
                util.shape(char_emb, 2),
                util.shape(char_emb, 3)
            ])  # [num_sentences * max_sentence_length, max_word_length, emb]
            flattened_aggregated_char_emb = util.cnn(
                flattened_char_emb, self.config["filter_widths"],
                self.config["filter_size"]
            )  # [num_sentences * max_sentence_length, emb]
            aggregated_char_emb = tf.reshape(flattened_aggregated_char_emb, [
                num_sentences, max_sentence_length,
                util.shape(flattened_aggregated_char_emb, 1)
            ])  # [num_sentences, max_sentence_length, emb]
            text_emb_list.append(aggregated_char_emb)

        text_emb = tf.concat(text_emb_list, 2)
        text_emb = tf.nn.dropout(text_emb, self.lexical_dropout)

        text_len_mask = tf.sequence_mask(text_len, maxlen=max_sentence_length)
        text_len_mask = tf.reshape(text_len_mask,
                                   [num_sentences * max_sentence_length])
        # self.text_len_mask = text_len_mask[0]

        text_outputs = self.encode_sentences(text_emb, text_len, text_len_mask)
        text_outputs = tf.nn.dropout(text_outputs, self.dropout)

        genre_emb = tf.gather(
            tf.get_variable("genre_embeddings",
                            [len(self.genres), self.config["feature_size"]]),
            genre)  # [emb]

        sentence_indices = tf.tile(
            tf.expand_dims(tf.range(num_sentences), 1),
            [1, max_sentence_length])  # [num_sentences, max_sentence_length]
        flattened_sentence_indices = self.flatten_emb_by_sentence(
            sentence_indices, text_len_mask)  # [num_words]
        flattened_text_emb = self.flatten_emb_by_sentence(
            text_emb, text_len_mask)  # [num_words]
        self.flattened_sentence_indices = flattened_sentence_indices

        candidate_starts, candidate_ends = coref_ops.spans(
            sentence_indices=flattened_sentence_indices,
            max_width=self.max_mention_width)
        candidate_starts.set_shape([None])
        candidate_ends.set_shape([None])

        candidate_mention_emb = self.get_mention_emb(
            flattened_text_emb, text_outputs, candidate_starts,
            candidate_ends)  # [num_candidates, emb]
        candidate_mention_scores = self.get_mention_scores(
            candidate_mention_emb)  # [num_mentions, 1]
        candidate_mention_scores = tf.squeeze(candidate_mention_scores,
                                              1)  # [num_mentions]

        k = tf.to_int32(
            tf.floor(
                tf.to_float(tf.shape(text_outputs)[0]) *
                self.config["mention_ratio"]))
        k = tf.minimum(k, self.config["max_antecedents"])
        predicted_mention_indices = coref_ops.extract_mentions(
            candidate_mention_scores, candidate_starts, candidate_ends,
            k)  # ([k], [k])
        predicted_mention_indices.set_shape([None])

        mention_starts = tf.gather(candidate_starts,
                                   predicted_mention_indices)  # [num_mentions]
        mention_ends = tf.gather(candidate_ends,
                                 predicted_mention_indices)  # [num_mentions]
        mention_emb = tf.gather(
            candidate_mention_emb,
            predicted_mention_indices)  # [num_mentions, emb]
        mention_scores = tf.gather(candidate_mention_scores,
                                   predicted_mention_indices)  # [num_mentions]

        mention_start_emb = tf.gather(text_outputs,
                                      mention_starts)  # [num_mentions, emb]
        mention_end_emb = tf.gather(text_outputs,
                                    mention_ends)  # [num_mentions, emb]
        mention_speaker_ids = tf.gather(speaker_ids,
                                        mention_starts)  # [num_mentions]

        max_antecedents = self.config["max_antecedents"]
        antecedents, antecedent_labels, antecedents_len = coref_ops.antecedents(
            mention_starts, mention_ends, gold_starts, gold_ends, cluster_ids,
            max_antecedents
        )  # ([num_mentions, max_ant], [num_mentions, max_ant + 1], [num_mentions]
        antecedents.set_shape([None, None])
        antecedent_labels.set_shape([None, None])
        antecedents_len.set_shape([None])

        antecedent_scores = self.get_antecedent_scores(
            mention_emb, mention_scores, antecedents, antecedents_len,
            mention_starts, mention_ends, mention_speaker_ids, genre_emb,
            k)  # [num_mentions, max_ant + 1]

        loss = self.softmax_loss(antecedent_scores,
                                 antecedent_labels)  # [num_mentions]
        # loss = self.exp_loss_margin(antecedent_scores, antecedent_labels) # [num_mentions]
        loss = tf.reduce_sum(loss)  # []

        return [
            candidate_starts, candidate_ends, candidate_mention_scores,
            mention_starts, mention_ends, antecedents, antecedent_scores
        ], loss