def save_to_db(): threading.Timer(60.0, save_to_db).start() # save one data point per minute if time_to_save_data(): image = util_guru.download(session) input = util_image.get_single_input_data(image) output = network.predict(input)[0][0] d = Data(output) print "Adding ", time.strftime("%m/%d %H:%M:%S", time.localtime()), " => ", output, "..." db.session.add(d) db.session.commit()
def current(): for file in glob.glob("web/static/img/*.jpg"): os.remove(file) image = util_guru.download(session) timestamp = time.time() file = "web/static/img/img-{}.jpg".format(timestamp) util_image.save(image, file) imageFile = "static/img/img-{}.jpg".format(timestamp) input = util_image.get_single_input_data(image) output = network.predict(input)[0][0] return jsonify(currentImg=imageFile, currentNum=output)
mode = raw_input("1: Train\n2: Load\n3: Live\n") exp = theanets.Experiment( theanets.feedforward.Regressor, layers=(config.IMG_W * config.IMG_H, 500, 1) ) if mode == "1": trainer.train(exp) if mode == "2": exp = exp.load(path="net.data") print "Manual validation:" for file in glob.glob("data/manual/*.jpg"): image = util_image.load(file) input = util_image.data(image) input = input.reshape(1, len(input)) output = exp.predict(input) print "Prediction for ", file, " = ", output if mode == "3": exp = exp.load(path="net.data") session = util_guru.start() while True: image = util_guru.download(session) print "Opening image..." image.show() input = util_image.get_single_input_data(image) output = exp.predict(input)[0][0] print "Crowded Level: ", output raw_input("Any key to download another image...")