goal_img, goal_depth = get_obs(goal_pose) goal_depth = goal_depth.copy() current_depth = start_depth.copy() episode_reward = 0 flag_succ = False for i_step in range(seq_len): if input_type == 'both' or input_type == 'siamese': overlapArea_currentView = genOverlapAreaOnCurrentView( current_depth, goal_depth, current_pose, goal_pose)[:, :, :2] overlapArea_goalView = genOverlapAreaOnGoalView( current_depth, goal_depth, current_pose, goal_pose)[:, :, :2] overlapArea = np.concatenate( (overlapArea_currentView, overlapArea_goalView), axis=2) elif input_type == 'optical_flow': overlapArea = genGtDenseCorrespondenseFlowMap( current_depth, goal_depth, current_pose, goal_pose)[:, :, :2] elif input_type == 'optical_flow_depth': opticalFlow = genGtDenseCorrespondenseFlowMap( current_depth, goal_depth, current_pose, goal_pose)[:, :, :2] overlapArea = np.concatenate((opticalFlow, current_depth), axis=2) elif input_type == 'optical_flow_depth_normalized': opticalFlow = genGtDenseCorrespondenseFlowMap(
def main(scene_idx=0, actual_episodes=1): #scene_idx = 0 #actual_episodes=2 Train_Scenes, Test_Scenes = get_train_test_scenes() scene_name = Train_Scenes[scene_idx] num_startPoints = len(mapper_scene2points[scene_name]) model_weights_save_path = '{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/trained_dqn') action_space = action_table.shape[0] ##============================================================================================================= ## rrt functions ## first figure out how to sample points from rrt graph rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name) path_finder = rrt.PathFinder(rrt_directory) path_finder.load() num_nodes = len(path_finder.nodes_x) free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0) ##------------------------------------------------------------------------------------------------------------ ## setup environment import gym, logging from mpi4py import MPI from gibson.envs.husky_env import HuskyNavigateEnv from baselines import logger import skimage.io from transforms3d.euler import euler2quat config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name)) env = HuskyNavigateEnv(config=config_file, gpu_count = 1) obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential'' mapper_scene2z = get_mapper() def get_obs(current_pose): pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name]) env.robot.reset_new_pose(pos, orn) obs, _, _, _ = env.step(4) obs_rgb = obs['rgb_filled'] obs_depth = obs['depth'] #obs_normal = obs['normal'] return obs_rgb, obs_depth#, obs_normal def close_to_goal(pose1, pose2, thresh=0.15): L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2) thresh_L2_dist = thresh theta_change = abs(pose1[2] - pose2[2])/math.pi * 180 return (L2_dist < thresh_L2_dist) and (theta_change <= 30) def compute_distance(left_pose, right_pose, lamb_alpha=0.5, lamb_beta=0.2): x1, y1 = left_pose[0], left_pose[1] x2, y2 = right_pose[0], right_pose[1] pho_dist = math.sqrt((x1-x2)**2 + (y1-y2)**2) left_pose_heading = left_pose[2] right_pose_heading = right_pose[2] location_angle = atan2(y2-y1, x2-x1) print('left_pose_heading = {}, right_pose_heading = {}, location_angle = {}'.format(left_pose_heading, right_pose_heading, location_angle)) if pho_dist >= 0.05: ## alpha angle in goToPose is the difference between location angle and left_pose_heading a1, b1 = cos(location_angle), sin(location_angle) a2, b2 = cos(left_pose_heading), sin(left_pose_heading) alpha_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2) ## beta angle in goToPose is the difference between right_pose_heading and location angle a1, b1 = cos(right_pose_heading), sin(right_pose_heading) a2, b2 = cos(location_angle), sin(location_angle) beta_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2) else: ## when pho_dist is close to zero, alpha_dist is not important alpha_dist = 0.0 ## beta angle becomes the anlge between left and right poses a1, b1 = cos(right_pose_heading), sin(right_pose_heading) a2, b2 = cos(left_pose_heading), sin(left_pose_heading) beta_dist = math.sqrt((a1-a2)**2 + (b1-b2)**2) print('pho_dist = {:.2f}, alpha_dist = {:.2f}, beta_dist = {:.2f}'.format(pho_dist, alpha_dist, beta_dist)) return pho_dist + lamb_alpha * alpha_dist + lamb_beta * beta_dist def decide_reward_and_done(previous_pose, current_pose, goal_pose, start_pose): ## check if the new step is on free space or not reward = 0.0 done = 0 ## check if current_pose is closer to goal_pose than previous_pose ''' L2_dist_current = math.sqrt((current_pose[0] - goal_pose[0])**2 + (current_pose[1] - goal_pose[1])**2) L2_dist_previous = math.sqrt((previous_pose[0] - goal_pose[0])**2 + (previous_pose[1] - goal_pose[1])**2) if L2_dist_current < L2_dist_previous: reward += 0.25 print('L2_dist_current = {:.2f}, L2_dist_previous = {:.2f}, reward = {}'.format(L2_dist_current, L2_dist_previous, reward)) ''' ## following Fereshteh's DiVIs paper dist_init = compute_distance(start_pose, goal_pose, lamb_alpha=0.2) dist_current = compute_distance(current_pose, goal_pose, lamb_alpha=0.2) reward = max(0, 1 - min(dist_init, dist_current)/(dist_init+0.0001)) print('dist_init = {:.2f}, dist_current = {:.2f}, reward = {:.2f}'.format(dist_init, dist_current, reward)) ## check if current_pose is close to goal ## goal reward should be larger than all the previously accumulated reward flag_close_to_goal = close_to_goal(current_pose, goal_pose) if flag_close_to_goal: reward = 50.0 done = 1 print('current_pose = {}, goal_pose = {}, flag_close_to_goal = {}, reward = {}'.format(current_pose, goal_pose, flag_close_to_goal, reward)) #collision_done = 0 ## if there is a collision, reward is -1 and the episode is done left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1])) right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1])) ## rrt.line_check returns True when there is no obstacle if not rrt.line_check(left_pixel, right_pixel, free): print('bumped into obstacle ....') reward = 0.0 #collision_done = 1 done=1 print('final reward = {}'.format(reward)) return reward, done, 0 #, collision_done ##============================================================================================================ base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('train') #agent = DQN_vs_triplet(trained_model_path=None, num_actions=action_space, input_channels=5) agent = DQN_vs_triplet(trained_model_path=model_weights_save_path, num_actions=action_space, input_channels=5) rewards = [] avg_rewards = [] for i_epoch in range(actual_episodes): ## go through each point folder for point_idx in range(0, num_startPoints): #for point_idx in range(0, 1): print('point_idx = {}'.format(point_idx)) ## read in start img and start pose point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx) point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx)) #start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1] start_pose = point_pose_npy_file[0]['pose'] start_img, start_depth = get_obs(start_pose) start_depth = start_depth.copy() ## index 0 is the left image, so right_img_idx starts from index 1 for right_img_idx in range(1, len(point_pose_npy_file)): #for right_img_idx in range(3, 4): #print('right_img_idx = {}'.format(right_img_idx)) current_pose = start_pose right_img_name = point_pose_npy_file[right_img_idx]['img_name'] goal_pose = point_pose_npy_file[right_img_idx]['pose'] #goal_img = cv2.imread('{}/{}.png'.format(point_image_folder, right_img_name), 1)[:,:,::-1] goal_img, goal_depth = get_obs(goal_pose) goal_img, goal_depth = goal_img.copy(), goal_depth.copy() overlapArea_currentView = genOverlapAreaOnCurrentView(start_depth, goal_depth, start_pose, goal_pose)[:,:,:2] overlapArea_goalView = genOverlapAreaOnGoalView(start_depth, goal_depth, start_pose, goal_pose)[:,:,:2] overlapArea = np.concatenate((overlapArea_currentView, overlapArea_goalView, start_depth), axis=2) state = [overlapArea] episode_reward = 0 for i_step in range(seq_len): action = agent.select_action(state) print('action = {}'.format(action)) ## update current_pose vz, omegay = action_table[action] print('vz = {:.2f}, omegay = {:.2f}'.format(vz, omegay)) vx = 0.0 vx = vx * lambda_action vz = vz * lambda_action omegay = omegay * pi * lambda_action print('actual velocity = {:.2f}, {:.2f}, {:.2f}'.format(vx, vz, omegay)) previous_pose = current_pose current_pose = update_current_pose(current_pose, vx, vz, omegay) ## compute new_state current_img, current_depth = get_obs(current_pose) next_left_img, next_left_depth = current_img.copy(), current_depth.copy() new_overlapArea_currentView = genOverlapAreaOnCurrentView(next_left_depth, goal_depth, current_pose, goal_pose)[:,:,:2] new_overlapArea_goalView = genOverlapAreaOnGoalView(next_left_depth, goal_depth, current_pose, goal_pose)[:,:,:2] new_overlapArea = np.concatenate((new_overlapArea_currentView, new_overlapArea_goalView, next_left_depth), axis=2) new_state = [new_overlapArea] ## visualize the state ''' fig = plt.figure(figsize=(15, 10)) r, c, = 2, 2 ax = fig.add_subplot(r, c, 1) ax.imshow(next_left_img) ax = fig.add_subplot(r, c, 2) ax.imshow(goal_img) ax = fig.add_subplot(r, c, 3) start_mask = np.concatenate((new_overlapArea, np.zeros((256, 256, 1), dtype=np.uint8)), axis=2) ax.imshow(start_mask) plt.show() ''' ## collision done only stops continuing the sequence, but won't affect reward computing reward, done, collision_done = decide_reward_and_done(previous_pose, current_pose, goal_pose, start_pose) print('done = {}, collision_done = {}'.format(done, collision_done)) if i_step == seq_len-1: print('used up all the steps ...') done = 1 agent.memory.push(state, action, reward, new_state, done) if len(agent.memory) > batch_size: agent.update(batch_size) state = new_state episode_reward += reward print('---------------- end of a action ------------------ ') if done or collision_done: break print('---------------- end of a sequence ------------------ ') rewards.append(episode_reward) avg_rewards.append(np.mean(rewards[-10:])) sys.stdout.write("------------------------------------epoch = {}, point = {}, traj = {}, reward: {}, average_reward: {} #_steps: {}\n".format(i_epoch, point_idx, right_img_idx, np.round(episode_reward, decimals=2), np.round(avg_rewards[-1], decimals=2), i_step)) if right_img_idx % 10 == 0: agent.update_critic() ## plot the running_loss plt.plot(rewards, label='reward') plt.plot(avg_rewards, label='avg_reward') plt.xlabel('Episode') plt.ylabel('Reward') plt.grid(True) plt.legend(loc='upper right') plt.yscale('linear') plt.title('change of reward and avg_reward') plt.savefig('{}/Reward_episode_{}_{}.jpg'.format( model_weights_save_path, num_episodes, scene_name), bbox_inches='tight') plt.close() torch.save(agent.actor.state_dict(), '{}/dqn_epoch_200000_{}.pt'.format(model_weights_save_path, scene_name)) torch.save(agent.actor.state_dict(), '{}/dqn_epoch_200000.pt'.format(model_weights_save_path))
def main(scene_idx=0, point_a=0): #scene_idx = 1 ## necessary constants mapper_scene2points = get_mapper_scene2points() num_episodes = 200000 batch_size = 64 lambda_action = 0.25 action_table = buildActionMapper(flag_fewer_actions=True) seq_len = 50 Train_Scenes, Test_Scenes = get_train_test_scenes() if mode == 'Test': scene_name = Test_Scenes[scene_idx] elif mode == 'Train': scene_name = Train_Scenes[scene_idx] num_startPoints = len(mapper_scene2points[scene_name]) model_weights_save_path = '{}/{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/trained_dqn', approach) action_space = action_table.shape[0] ##============================================================================================================= ## rrt functions ## first figure out how to sample points from rrt graph rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name) path_finder = rrt.PathFinder(rrt_directory) path_finder.load() num_nodes = len(path_finder.nodes_x) free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0) ##------------------------------------------------------------------------------------------------------------ ## setup environment import gym, logging from mpi4py import MPI from gibson.envs.husky_env import HuskyNavigateEnv from baselines import logger import skimage.io from transforms3d.euler import euler2quat config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name)) env = HuskyNavigateEnv(config=config_file, gpu_count = 1) obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential'' mapper_scene2z = get_mapper() def get_obs(current_pose): pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name]) env.robot.reset_new_pose(pos, orn) obs, _, _, _ = env.step(4) obs_rgb = obs['rgb_filled'] obs_depth = obs['depth'] #obs_normal = obs['normal'] return obs_rgb, obs_depth#, obs_normal def close_to_goal(pose1, pose2, thresh=0.20): L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2) thresh_L2_dist = thresh theta_change = abs(pose1[2] - pose2[2])/math.pi * 180 return (L2_dist <= thresh_L2_dist) #and (theta_change <= 30) ##============================================================================================================ if mode == 'Test': base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('test') elif mode == 'Train': base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('train') import torch import torch.nn as nn import torch.nn.functional as F device = torch.device('cuda:0') ## Default CUDA device num_epochs = 200000 ## same as # of trajs sampled num_actions = action_table.shape[0] if input_type == 'both': perception = Perception_overlap(4).to(device) elif input_type == 'siamese': perception = Perception_siamese(4).to(device) elif input_type == 'optical_flow': perception = Perception_overlap(2).to(device) elif input_type == 'optical_flow_depth': perception = Perception_overlap(3).to(device) elif input_type == 'optical_flow_depth_normalized': perception = Perception_overlap(3).to(device) elif input_type == 'optical_flow_depth_unnormalized_mask': perception = Perception_overlap(3).to(device) elif input_type == 'optical_flow_depth_siamese': perception = Perception_siamese_fusion_new(3).to(device) elif input_type == 'optical_flow_memory': perception = Preception_overlap_resnet(4).to(device) else: perception = Perception_overlap(2).to(device) if input_type == 'siamese': model = DQN_OVERLAP_Controller(perception, num_actions, input_size=512).to(device) elif input_type == 'optical_flow_memory': model = DQN_OVERLAP_RESNET_Controller(perception, num_actions, input_size=512).to(device) else: model = DQN_OVERLAP_Controller(perception, num_actions, input_size=256).to(device) model.load_state_dict(torch.load('{}/dqn_epoch_{}_Uvalda.pt'.format(model_weights_save_path, num_epochs))) #model.eval() list_succ = [] list_collision = [] ## go through each point folder if mode == 'Test': a, b = 0, 1 elif mode == 'Train': a, b = 7, 8 #a, b = 0, 1 #for point_idx in range(0, num_startPoints): #for point_idx in range(a, b): for point_idx in range(point_a, point_a+1): print('point_idx = {}'.format(point_idx)) task_folder = '{}/{}/point_{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/for_video', scene_name, point_idx) create_folder(task_folder) ## read in start img and start pose point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx) point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx)) #start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1] start_pose = point_pose_npy_file[0]['pose'] start_img, start_depth = get_obs(start_pose) start_depth = start_depth.copy() count_succ = 0 count_collision = 0 count_short_runs = 0 count_short_runs_collision = 0 count_short_runs_succ = 0 ## index 0 is the left image, so right_img_idx starts from index 1 #for right_img_idx in range(1, len(point_pose_npy_file)): for right_img_idx in range(1, 101): print('right_img_idx = {}'.format(right_img_idx)) run_folder = '{}/run_{}'.format(task_folder, right_img_idx) create_folder(run_folder) current_pose = start_pose right_img_name = point_pose_npy_file[right_img_idx]['img_name'] goal_pose = point_pose_npy_file[right_img_idx]['pose'] #goal_img = cv2.imread('{}/{}.png'.format(point_image_folder, right_img_name), 1)[:,:,::-1] goal_img, goal_depth = get_obs(goal_pose) goal_depth = goal_depth.copy() current_depth = start_depth.copy() episode_reward = 0 flag_succ = False poses_list = [] poses_list.append(start_pose) poses_list.append(goal_pose) poses_list.append([current_pose]) for i_step in range(seq_len): if input_type == 'both' or input_type == 'siamese': overlapArea_currentView = genOverlapAreaOnCurrentView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] overlapArea_goalView = genOverlapAreaOnGoalView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] overlapArea = np.concatenate((overlapArea_currentView, overlapArea_goalView), axis=2) elif input_type == 'optical_flow': overlapArea = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] overlapArea = removeCorrespondenceRandomly(overlapArea, keep_prob=1.0) elif input_type == 'optical_flow_depth': opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] overlapArea = np.concatenate((opticalFlow, current_depth), axis=2) elif input_type == 'optical_flow_depth_normalized': opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] normalized_opticalFlow = normalize_opticalFlow(opticalFlow) normalized_depth = normalize_depth(current_depth) #normalized_depth = np.ones((256, 256, 1), np.float32) overlapArea = np.concatenate((normalized_opticalFlow, normalized_depth), axis=2) elif input_type == 'optical_flow_depth_unnormalized_mask': opticalFlow, mask_flow = genGtDenseCorrespondenseFlowMapAndMask(current_depth, goal_depth, current_pose, goal_pose) opticalFlow = opticalFlow[:, :, :2] normalized_depth = current_depth * mask_flow #normalized_opticalFlow = normalize_opticalFlow(opticalFlow) normalized_depth = normalize_depth(normalized_depth) overlapArea = np.concatenate((opticalFlow, normalized_depth), axis=2) elif input_type == 'optical_flow_depth_siamese': opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] normalized_depth = normalize_depth(current_depth) #normalized_depth = np.ones((256, 256, 1), np.float32) overlapArea = np.concatenate((opticalFlow, normalized_depth), axis=2) #print('overlapArea.shape = {}'.format(overlapArea.shape)) elif input_type == 'optical_flow_memory': opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] if i_step == 0: overlapArea = np.concatenate((opticalFlow, opticalFlow), axis=2) else: overlapArea = np.concatenate((old_opticalFlow, opticalFlow), axis=2) else: overlapArea = genOverlapAreaOnCurrentView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2] tensor_left = torch.tensor(overlapArea, dtype=torch.float32).to(device).unsqueeze(0).permute(0, 3, 1, 2) Qvalue_table = model(tensor_left) pred = Qvalue_table.max(1)[1].view(1, 1).detach().cpu().numpy().item() ## batch_size x 3 #print('Qvalue_table: {}'.format(Qvalue_table)) #print('pred = {}'.format(pred)) ## update current_pose vz, omegay = action_table[pred] #print('vz = {:.2f}, omegay = {:.2f}'.format(vz, omegay)) vx = 0.0 vx = vx * lambda_action vz = vz * lambda_action omegay = omegay * pi * lambda_action #print('actual velocity = {:.2f}, {:.2f}, {:.2f}'.format(vx, vz, omegay)) previous_pose = current_pose current_pose = update_current_pose(current_pose, vx, vz, omegay) poses_list[2].append(current_pose) flag_broken = False left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1])) right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1])) ## rrt.line_check returns True when there is no obstacle if not rrt.line_check(left_pixel, right_pixel, free): print('run into something') flag_broken = True break if close_to_goal(current_pose, goal_pose): print('success run') flag_succ = True break ## compute new_state current_img, current_depth = get_obs(current_pose) current_depth = current_depth.copy() #old_opticalFlow = opticalFlow.copy() np.save('{}/{}_waypoint_pose_list.npy'.format(run_folder, right_img_name[10:]), poses_list) #assert 1==2 if flag_succ: count_succ += 1 list_succ.append(point_pose_npy_file[right_img_idx]['img_name']) if findShortRangeImageName(right_img_name): count_short_runs_succ += 1 if flag_broken: count_collision += 1 list_collision.append(point_pose_npy_file[right_img_idx]['img_name']) if findShortRangeImageName(right_img_name): count_short_runs_collision += 1 if findShortRangeImageName(right_img_name): count_short_runs += 1 print('count_succ = {}'.format(count_succ)) print('count_collision = {}'.format(count_collision)) print('count_short_runs_succ = {}'.format(count_short_runs_succ)) print('count_short_runs_collision = {}'.format(count_short_runs_collision)) print('num_succ = {}, num_run = {}, count_short_runs_succ = {}, count_short_runs = {}'.format(count_succ, len(point_pose_npy_file), count_short_runs_succ, count_short_runs))