def start(self): print self.get_name() trial = [] self._setup_options(self.config) t0 = time() self.data = datautil.load_dataset(self.dataname, self.data_path, categories=self.data_cat, rnd=self.seed, shuffle=True, percent=self.split, keep_subject=True) self.print_lap("Loaded", t0) # self.data = self.vectorize(self.data) cv = self.cross_validation_data(self.data, folds=self.folds, trials=self.trials, split=self.split) t = 0 for train_index, test_index in cv: # get the data of this cv iteration # train, test = exputil.sample_data(self.data, train_index, test_index) train, test = self._sample_data(self.data, train_index, test_index) self.print_lap("\nSampled", t0) # get the expert and student learner = exputil.get_learner(cfgutil.get_section_options(self.config, 'learner'), vct=self.vct, sent_tk=self.sent_tokenizer, seed=(t * 10 + 10), cost_model=self.cost_model) expert = exputil.get_expert(cfgutil.get_section_options(self.config, 'expert'), size=len(train.data)) expert.fit(train.data, y=train.target, vct=self.vct) # do active learning results = self.main_loop(learner, expert, self.budget, self.bootstrap_size, train, test) self.print_lap("\nTrial %s" % t, t0) # save the results trial.append(results) t += 1 self.report_results(trial)
def start(self, n_jobs=1, pre_dispatch='2*n_jobs'): trial = [] self._setup_options(self.config) print self.get_name() t0 = time() self.data = datautil.load_dataset(self.dataname, self.data_path, categories=self.data_cat, rnd=self.seed, shuffle=True, percent=self.split, keep_subject=True) self.print_lap("Loaded", t0) self.data = self.vectorize(self.data) cv = self.cross_validation_data(self.data, folds=self.folds, trials=self.trials, split=self.split) seeds = np.arange(len(cv)) * 10 + 10 expert = exputil.get_expert(cfgutil.get_section_options(self.config, 'expert'), size=(len(self.data.train.target),self.data.train.sizes.max())) expert.fit(self.data.train.bow, y=self.data.train.target, vct=self.vct) lrnr_setup= {'vct':self.vct, "sent_tk":self.sent_tokenizer, "cost_model":self.cost_model, 'validation_set':self.validation_set} lrnr_type = cfgutil.get_section_option(self.config, 'learner', 'type') neu_threshold = cfgutil.get_section_option(self.config, 'expert', 'threshold') if lrnr_type in ['utility-cheat','const-cheat','const-cheat-noisy']: lrnr_setup.update({'snip_model':expert.oracle, 'threshold':neu_threshold}) learners = [exputil.get_learner(cfgutil.get_section_options(self.config, 'learner'), seed=s, **lrnr_setup) for s in seeds] self.print_lap("\nPreprocessed", t0) # =================================== parallel = Parallel(n_jobs=n_jobs, verbose=True, pre_dispatch=pre_dispatch) scores = parallel(delayed(self.main_loop_jobs,check_pickle=False)(learners[t], expert, self.budget, self.bootstrap_size, self.data, tr[0],tr[1], t) for t, tr in enumerate(cv)) # =================================== self.print_lap("\nDone trials", t0) # save the results self.report_results(scores)