def set_order( self, order, index_norm_order = 1.0 ):
        self.order = order

        index_generator = IndexGenerator()
        #index_generator.set_parameters( self.num_dims, order, 
        #                                index_norm_order = index_norm_order )
        #index_generator.build_isotropic_index_set()
        #self.basis_indices = index_generator.get_all_indices()
        self.basis_indices = \
            index_generator.get_isotropic_indices( self.num_dims, 
                                                   order, 
                                                   index_norm_order )
        
        self.num_terms = len( self.basis_indices )
        self.coeff = numpy.zeros( (self.num_terms), numpy.double )
Exemple #2
0
from utilities.indexing import PolynomialIndex, IndexGenerator

# num_dims = 2, max_level = 6 index_norm_order = 0.5
num_dims = 10
max_level = 30
index_generator = IndexGenerator()
index_generator.set_parameters( num_dims, max_level, index_norm_order = 0.5,
                                priority_weight = 1. )
index_generator.build_isotropic_index_set()
indices = index_generator.get_all_indices()
print index_generator.num_indices
    def test_index_generator( self ):
        index_generator = IndexGenerator()

        # num_dims = 2, max_level = 3 index_norm_order = 1
        num_dims = 2
        max_level = 3
        index_generator.set_parameters( num_dims, max_level, 
                                        index_norm_order = 1,
                                        priority_weight = 1. )
        index_generator.build_isotropic_index_set()
        indices = index_generator.get_all_indices()

        true_indices = [[0, 0],
                        [1, 0],
                        [2, 0],
                        [0, 1],
                        [1, 1],
                        [0, 2],
                        [1, 2],
                        [2, 1],
                        [3, 0],
                        [0, 3]]
        indices_list = []
        for i, index in enumerate( indices ):
            indices_list.append( index.uncompressed_data( num_dims ) )

        indices = unique_matrix_rows( numpy.array( indices_list ))
        true_indices =  unique_matrix_rows( numpy.array( true_indices ) )
        assert numpy.allclose( true_indices, indices )

        # num_dims = 3, max_level = 2 index_norm_order = 1
        num_dims = 3
        max_level = 2
        index_generator.set_parameters( num_dims, max_level, 
                                        index_norm_order = 1,
                                        priority_weight = 1. )
        index_generator.build_isotropic_index_set()
        indices = index_generator.get_all_indices()

        true_indices = [[0, 0, 0],
                        [1, 0, 0],
                        [0, 1, 0],
                        [0, 0, 1],
                        [2, 0, 0],
                        [1, 1, 0],
                        [0, 2, 0],
                        [1, 0, 1],
                        [0, 1, 1],
                        [0, 0, 2]]

        indices_list = []
        for i, index in enumerate( indices ):
            indices_list.append( index.uncompressed_data( num_dims ) )

        indices = unique_matrix_rows( numpy.array( indices_list ))
        true_indices =  unique_matrix_rows( numpy.array( true_indices ) )
        assert numpy.allclose( true_indices, indices )

        # num_dims = 2, max_level = 3 index_norm_order = 0.5
        num_dims = 2
        max_level = 3
        index_generator = IndexGenerator()
        index_generator.set_parameters( num_dims, max_level, 
                                        index_norm_order = 0.5,
                                        priority_weight = 1. )
        index_generator.build_isotropic_index_set()
        indices = index_generator.get_all_indices()

        true_indices = [[0, 0],
                        [1, 0],
                        [2, 0],
                        [3, 0],
                        [0, 1],
                        [0, 2],
                        [0, 3]]
        indices_list = []
        for i, index in enumerate( indices ):
            indices_list.append( index.uncompressed_data( num_dims ) )

        indices = unique_matrix_rows( numpy.array( indices_list ) )
        true_indices =  unique_matrix_rows( numpy.array( true_indices ) )
        assert numpy.allclose( true_indices, indices )

        # num_dims = 2, max_level = 6 index_norm_order = 0.5
        num_dims = 2
        max_level = 6
        index_generator = IndexGenerator()
        index_generator.set_parameters( num_dims, max_level, 
                                        index_norm_order = 0.5,
                                        priority_weight = 1. )
        index_generator.build_isotropic_index_set()
        indices = index_generator.get_all_indices()

        true_indices = [[0, 0],
                        [1, 0],
                        [2, 0],
                        [3, 0],
                        [4, 0],
                        [5, 0],
                        [6, 0],
                        [1, 1],
                        [2, 1],
                        [1, 2],
                        [0, 1],
                        [0, 2],
                        [0, 3],
                        [0, 4],
                        [0, 5],
                        [0, 6]]

        indices_list = []
        for i, index in enumerate( indices ):
            indices_list.append( index.uncompressed_data( num_dims ) )

        indices = unique_matrix_rows( numpy.array( indices_list ) )
        true_indices =  unique_matrix_rows( numpy.array( true_indices ) )
        assert numpy.allclose( true_indices, indices )
Exemple #4
0
def pce_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):

    num_dims = build_pts.shape[0]

    index_generator = IndexGenerator()

    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

    if ( solver_type == 1 ):
        num_folds = build_pts.shape[1]
    else:
        num_folds = 20

    index_norm_orders = numpy.linspace( 0.4, 1.0, 4 )    
    #if (solver_tupe == 1):
    #    index_norm_orders = [.4,.5,.6,.7,.8,.9,1.]

    #solvers = numpy.array( [solver_type], numpy.int32 )
    #cv_params_grid_array = cartesian_product( [solvers,orders] )
    cv_params_grid = []
    for index_norm_order in index_norm_orders:
        level = 2
        # determine what range of orders to consider. 
        # spefically consider any order that results in a pce with terms <= 3003
        while ( True ):
            #index_generator.set_parameters( num_dims, level, 
            #                                index_norm_order = index_norm_order)
            indices = index_generator.get_isotropic_indices( num_dims, level, 
                                                             index_norm_order )
            num_indices = len( indices )
            print level, index_norm_order, len ( indices )
            if ( num_indices > 3003 ):
                break
            
            cv_params = {}
            cv_params['solver'] = solver_type
            cv_params['order'] = level
            cv_params['index_norm_order'] = index_norm_order

            if ( cv_params['solver'] > 1 or 
                 num_indices <= build_pts.shape[1] ):
                # only do least squares on over-determined systems
                cv_params_grid.append( cv_params  )

            level += 1

    print cv_params_grid

    # cv_iterator = LeaveOneOutCrossValidationIterator()    
    cv_iterator = KFoldCrossValidationIterator( num_folds = num_folds )
    CV = GridSearchCrossValidation( cv_iterator, pce,
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = True )
    t0 = time.time()
    CV.run( build_pts, build_vals, cv_params_grid )
    time_taken = time.time() - t0
    print 'cross validation took ', time_taken, ' seconds'
    
    print "################"
    print "Best cv params: ", CV.best_cv_params
    print "Best cv score: ", CV.best_score
    print "################"

    #for i in xrange( len( CV.cv_params_set ) ):
    #    print CV.cv_params_set[i], CV.scores[i]

    best_order = CV.best_cv_params['order']
    best_index_norm_order = CV.best_cv_params['index_norm_order']

    best_pce = PCE( num_dims, 
                    order = best_order, 
                    basis = basis, 
                    func_domain = domain,
                    index_norm_order = best_index_norm_order)
    V = best_pce.vandermonde( build_pts ).T
    best_pce.set_solver( CV.best_cv_params['solver'] )
    if  cv_params['solver'] != 1 and cv_params['solver'] != 5:
        best_res_tol = CV.best_cv_params['norm_residual']
        best_pce.linear_solver.residual_tolerance = best_res_tol
        
    sols, sol_metrics = best_pce.linear_solver.solve( V, build_vals )
    coeff = sols[:,-1]

    best_pce.set_coefficients( coeff )
    error = abs( build_vals - best_pce.evaluate_set( build_pts ) )
    print max( error )

    print 'Evaluating best pce at test points'
    num_test_pts = test_pts.shape[1]
    pce_vals_pred = best_pce.evaluate_set( test_pts ).T
    print test_vals.shape, pce_vals_pred.shape
    error = test_vals.squeeze() - pce_vals_pred
    linf_error = numpy.max( numpy.absolute( error ) )
    l2_error = numpy.sqrt( numpy.dot( error.T, error ) / num_test_pts )
    mean = numpy.mean( pce_vals_pred )
    var =  numpy.var( pce_vals_pred )
    pce_mean = best_pce.mean()
    pce_var = best_pce.variance()

    if results_file is not None:
        results_file.write( '%1.15e' %linf_error + ',' +  '%1.15e' %l2_error + 
                            ',' +  '%1.15e' %mean + ',' +  '%1.15e' %var + 
                            ',%1.15e' %pce_mean + ',' + '%1.15e' %pce_var + '\n')

    print "linf error: ", linf_error
    print "l2 error: ", l2_error
    print "mean: ", mean 
    print "var: ", var
    print "pce mean: ", pce_mean 
    print "pce var: ", pce_var
def pce_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):

    num_dims = build_pts.shape[0]

    index_generator = IndexGenerator()

    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

    if ( solver_type == 1 ):
        num_folds = build_pts.shape[1]
    else:
        num_folds = 20

    index_norm_orders = numpy.linspace( 0.4, 1.0, 4 )
    #solvers = numpy.array( [solver_type], numpy.int32 )
    #cv_params_grid_array = cartesian_product( [solvers,orders] )
    cv_params_grid = []
    for index_norm_order in index_norm_orders:
        level = 2
        # determine what range of orders to consider. 
        # spefically consider any order that results in a pce with terms <= 3003
        while ( True ):
            index_generator.set_parameters( num_dims, level, 
                                            index_norm_order = index_norm_order )
            index_generator.build_isotropic_index_set()
            print level, index_norm_order, index_generator.num_indices
            if ( index_generator.num_indices > 3003 ):
                break
            
            cv_params = {}
            cv_params['solver'] = solver_type
            cv_params['order'] = level
            cv_params['index_norm_order'] = index_norm_order

            if ( cv_params['solver'] > 1 or 
                 index_generator.num_indices <= build_pts.shape[1] ):
                # only do least squares on over-determined systems
                cv_params_grid.append( cv_params  )
            else:
                break

            level += 1

    print cv_params_grid

    # cv_iterator = LeaveOneOutCrossValidationIterator()    
    cv_iterator = KFoldCrossValidationIterator( num_folds = num_folds )
    CV = GridSearchCrossValidation( cv_iterator, pce,
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = True )
    t0 = time.time()
    CV.run( build_pts, build_vals, cv_params_grid )
    time_taken = time.time() - t0
    print 'cross validation took ', time_taken, ' seconds'
    
    print "################"
    print "Best cv params: ", CV.best_cv_params
    print "Best cv score: ", CV.best_score
    print "################"

    #for i in xrange( len( CV.cv_params_set ) ):
    #    print CV.cv_params_set[i], CV.scores[i]

    best_order = CV.best_cv_params['order']
    best_index_norm_order = CV.best_cv_params['index_norm_order']

    best_pce = PCE( num_dims, 
                    order = best_order, 
                    basis = basis, 
                    func_domain = domain,
                    index_norm_order = best_index_norm_order)
    V = best_pce.vandermonde( build_pts ).T
    best_pce.set_solver( CV.best_cv_params['solver'] )
    if  cv_params['solver'] > 1 :
        best_res_tol = CV.best_cv_params['norm_residual']
        best_pce.linear_solver.residual_tolerance = best_res_tol
        
    sols, sol_metrics = best_pce.linear_solver.solve( V, build_vals )
    coeff = sols[:,-1]

    best_pce.set_coefficients( coeff )
    error = abs( build_vals - best_pce.evaluate_set( build_pts ) )
    print max( error )

    print 'Evaluating best pce at test points'
    num_test_pts = test_pts.shape[1]
    pce_vals_pred = best_pce.evaluate_set( test_pts ).T
    print test_vals.shape, pce_vals_pred.shape
    error = test_vals.squeeze() - pce_vals_pred
    linf_error = numpy.max( numpy.absolute( error ) )
    l2_error = numpy.sqrt( numpy.dot( error.T, error ) / num_test_pts )
    mean = numpy.mean( pce_vals_pred )
    var =  numpy.var( pce_vals_pred )
    pce_mean = best_pce.mean()
    pce_var = best_pce.variance()

    if results_file is not None:
        results_file.write( '%1.15e' %linf_error + ',' +  '%1.15e' %l2_error + 
                            ',' +  '%1.15e' %mean + ',' +  '%1.15e' %var + 
                            ',%1.15e' %pce_mean + ',' + '%1.15e' %pce_var + '\n')

    print "linf error: ", linf_error
    print "l2 error: ", l2_error
    print "mean: ", mean 
    print "var: ", var
    print "pce mean: ", pce_mean 
    print "pce var: ", pce_var

    me, te, ie = best_pce.get_sensitivities()
    interaction_values, interaction_terms = best_pce.get_interactions()

    show = False
    fignum = 1
    filename = 'oscillator-individual-interactions.png'
    plot_interaction_values( interaction_values, interaction_terms, title = 'Sobol indices', truncation_pct = 0.95, filename = filename, show = show,
                             fignum = fignum )
    fignum += 1
    filename = 'oscillator-dimension-interactions.png'
    plot_interaction_effects( ie, title = 'Dimension-wise joint effects', truncation_pct = 0.95, filename = filename, show = show,fignum = fignum   )
    fignum += 1
    filename = 'oscillator-main-effects.png'
    plot_main_effects( me, truncation_pct = 0.95, title = 'Main effect sensitivity indices', filename = filename, show = show, fignum = fignum  )
    fignum += 1
    filename = 'oscillator-total-effects.png'
    plot_total_effects( te, truncation_pct = 0.95, title = 'Total effect sensitivity indices', filename = filename, show = show, fignum = fignum  )
    fignum += 1

    from scipy.stats.kde import gaussian_kde
    pylab.figure( fignum  )
    pce_kde = gaussian_kde( pce_vals_pred )
    pce_kde_x = numpy.linspace( pce_vals_pred.min(), pce_vals_pred.max(), 100 )
    pce_kde_y = pce_kde( pce_kde_x )
    pylab.plot( pce_kde_x, pce_kde_y,label = 'pdf of surrogate' )
    true_kde = gaussian_kde( test_vals )
    true_kde_x = numpy.linspace( test_vals.min(), test_vals.max(), 100 )
    true_kde_y = true_kde( true_kde_x )
    pylab.plot( true_kde_x, true_kde_y, label = 'true pdf' )
    pylab.legend(loc=2)
    pylab.show()
def least_factorization( x, basis, domain, basis_indices = None ):
    assert x.ndim == 2, 'x must be a 2d array (num_dims x num_pts)'
    num_dims, num_pts = x.shape
    numpy.set_printoptions(precision=17)
    basis_indices_list = []

    l = numpy.eye( num_pts )
    u = numpy.eye( num_pts )
    p = numpy.eye( num_pts )

    # This is just a guess: this vector could be much larger, or much smaller
    v = numpy.zeros( ( 1000, 1 ) )
    v_index = 0;

    # Current polynomial degree
    k_counter = 0
    # k(q) gives the degree used to eliminate the q'th point
    k = numpy.zeros( ( num_pts , 1 ) )

    # The current LU row to factor out:
    lu_row = 0

    index_generator = IndexGenerator()

    # Current degree is k_counter, and we iterate on this
    while ( lu_row < num_pts ):
        # We are going to generate the appropriate columns of W -- 
        # these are polynomial indices for degree k of the basis.

        # Get the current size of k-vectors
        if basis_indices is None:

            poly_indices = index_generator.get_isotropic_level_indices(num_dims,
                                                                       k_counter,
                                                                       1. )
            n = len( basis_indices_list )
            for i in xrange( len ( poly_indices ) ):
                poly_indices[i].set_array_index( n + i )

        else:
            n = len( basis_indices_list )
            poly_indices = []
            for index in basis_indices:
                if index.level_sum() == k_counter:
                     poly_indices.append( index )
                     index.set_array_index( n )
                     n += 1

        basis_indices_list += poly_indices

        current_dim = len( poly_indices )

        W = numpy.empty( ( current_dim, num_pts ), numpy.double )
        for i, index in enumerate( poly_indices ):
            W[i,:] = basis.value( x, index, domain )
            #tmp to match akils polynomials
            #W[i,:] /= numpy.sqrt(basis.l2_norm(index))*2
        W = dot( p, W.T )
        #print '##############'
        #print lu_row
        #print W[lu_row:num_pts,:]
        #print 'p',numpy.nonzero(p)[1]


        # Row-reduce W according to previous elimination steps
        end = W.shape[0]
        for q in range( lu_row ):
            W[q,:] = W[q,:] / l[q,q];
            W[q+1:end,:] -= dot( l[q+1:end,q].reshape( ( end-q-1, 1) ) , 
                                 W[q,:].reshape( (1, W.shape[1] ) ) );
        #print 'W',W
        #print 'l', l

        # The mass matrix defining the inner product for this degree
        M = numpy.eye( current_dim )
        #M = numpy.zeros( ( poly_indices.shape[0], poly_indices.shape[0] ),
        #                 numpy.double );
        #for i, index in enumerate( poly_indices ):
        #    M[i,i] = basis.l2_norm( index )

        # Get upper triangular factorization of mass matrix
        # M = numpy.linalg.cholesky( M )

        # lapack function for qr DGEQP3
        wm =  dot(W[lu_row:num_pts,:] , M ).T
        Q, R, evec = qr( wm, pivoting = True, 
                         mode = 'economic' )

        #print 'wm', wm
        #print 'Q',Q
        #print 'R',R
        #print 'e', evec
        
        #rnk = matrix_rank( R )
        rnk = 0
        for i in xrange( R.shape[0] ):
            # If RHS is too large then if basis is fixed on entry
            # then an error may be thrown by Python
            if abs( R[i,i] ) < 0.001 * abs( R[0,0] ):
                break
            rnk += 1

        #print 'rnk',rnk

        NN = num_pts - lu_row
        e = numpy.zeros( ( NN, NN ), numpy.double )
        for qq in xrange( NN ):
            e[evec[qq],qq] = 1.;
        
        # Now first we must permute the rows by e
        #print  numpy.nonzero(p[lu_row:num_pts,:])[1]
        p[lu_row:num_pts,:] = dot( e.T, p[lu_row:num_pts,:] );
        # And correct by permuting l as well:
        #print 'l_sub', l[lu_row:num_pts,:lu_row]
        #print 'l_sub', l[lu_row:num_pts,:lu_row].shape
        l[lu_row:num_pts,:lu_row] = dot( e.T, l[lu_row:num_pts,:lu_row] );

        #print 'p', numpy.nonzero(p)[1]
        #print 'l', l


        # The matrix r gives us inner product information for all rows below 
        # these in W
        l[lu_row:num_pts,lu_row:lu_row+rnk] = R[:rnk,:].T;

        #print 'l', l
        
        #print 'usub', u[:lu_row,lu_row:lu_row+rnk]
        #print 'wusb',  W[:lu_row,:]
        #print  'qsub', Q[:,:rnk]
        # Now we must find inner products of all the other rows above these in W
        u[:lu_row,lu_row:lu_row+rnk] = dot( dot( W[:lu_row,:], M ), 
                                            Q[:,:rnk] );

        #print 'u', u
        #print Q
        if ( v_index+(current_dim*rnk) > v.shape[0] ):
            v.resize( (v.shape[0] + max(1000,current_dim*rnk), 1 ) )
        # The matrix q must be saved in order to characterize basis
        # order = 'F' is used to reshape using column major 
        # order (used in fortran/matlab) this makes code consisten with matlab
        v[v_index:v_index+(current_dim*rnk)] = numpy.reshape( Q[:,:rnk], 
                                          (rnk*current_dim,1),order='F').copy();
        v_index = v_index+(current_dim*rnk);
        #print Q[:,:rnk]
        #print 'v',v[:v_index]
     
        # Update degree markers, and node and degree count
        k[lu_row:(lu_row+rnk)] = k_counter;
        lu_row = lu_row + rnk;
        k_counter = k_counter + 1;
     
    # Chop off parts of unnecessarily allocated vector v
    v = numpy.resize( v, ( v_index ) );

    # Make matrix H:
    H = get_least_polynomial_coefficients( v, num_dims, num_pts, k,
                                           #basis_indices ) 
                                           basis_indices_list )


    return l,u,p,H,v,k,basis_indices_list
def sequential_least_factorization( x, basis, domain, N = None, 
                                    basis_indices = None ):
    assert x.ndim == 2, 'x must be a 2d array (num_dims x num_pts)'
    num_dims, num_pts = x.shape

    if N is None:
        N = num_pts
    else:
        assert N <= num_pts

    basis_indices_list = []

    l = numpy.eye( N )
    u = numpy.eye( N )
    p = numpy.eye( N )

    # This is just a guess: this vector could be much larger, or much smaller
    v = numpy.zeros( ( 1000, 1 ) )
    v_index = 0;
    
    # Current polynomial degree
    k_counter = 0
    # k(q) gives the degree used to eliminate the q'th point
    k = numpy.zeros( ( N , 1 ) )

    # The current LU row to factor out:
    lu_row = 0

    # Every time the basis degree is increased compute the rank
    # of the matrix formed using the new basis terms
    find_rank = True

    index_generator = IndexGenerator()

    while ( lu_row < N ):

        # Get the current size of k-vectors
        if find_rank:
            if basis_indices is None:
                poly_indices = \
                    index_generator.get_isotropic_level_indices(num_dims,
                                                                k_counter,
                                                                1. )
                n = len( basis_indices_list )
                for i in xrange( len ( poly_indices ) ):
                    poly_indices[i].set_array_index( n + i )

            else:
                print '###############', k_counter
                poly_indices = []
                for index in basis_indices:
                    if index.level_sum() == k_counter:
                         poly_indices.append( index )

            basis_indices_list += poly_indices

        current_dim = len( poly_indices )

        W = numpy.empty( ( current_dim, num_pts ), numpy.double )
        for i, index in enumerate( poly_indices ):
            W[i,:] = basis.value( x, index, domain )
            #tmp to match akils polynomials
            #W[i,:] /= numpy.sqrt(basis.l2_norm(index))*2
        W = dot( p, W.T )

        # Row-reduce W according to previous elimination steps
        end = W.shape[0]
        for q in range( lu_row ):
            W[q,:] = W[q,:] / l[q,q];
            W[q+1:end,:] -= dot( l[q+1:end,q].reshape( ( end-q-1, 1) ) , 
                                 W[q,:].reshape( (1, W.shape[1] ) ) );

        #wm =  dot(W[lu_row:N,:] , M ).T
        wm = W[lu_row:N,:].T

        #print 'W', numpy.sqrt( numpy.sum( wm**2, axis = 0 ) )

        if find_rank:
            #rnk = numpy.linalg.matrix_rank( wm )
            Q, R, evec = qr( wm, pivoting = True, 
                             mode = 'economic' )
            rnk = 0
            for i in range(R.shape[0] ):
                # If RHS is too large then if basis is fixed on entry
                # then an error may be thrown by Python
                if abs( R[i,i] ) < 0.001 * abs( R[0,0] ):
                    break
                rnk += 1
            find_rank = False

        # Find the column with the largest inner norm and compute inner products
        column_norms = numpy.sqrt( numpy.sum( wm**2, axis = 0 ) )
        next_index = column_norms.argmax()

        row = wm[:,next_index] / column_norms[next_index]
        tmp = numpy.dot( row, wm )
        inner_products = numpy.empty( ( tmp.shape[0] ), numpy.double )
        inner_products[0] = column_norms[next_index]
        if ( next_index > 0 ):
            inner_products[1:next_index+1] = tmp[:next_index]
        if ( next_index < tmp.shape[0]-1 ):
            inner_products[next_index+1:] = tmp[next_index+1:]

        # Determine LU permutations. 
        # Generate permutation indices I
        I = numpy.empty( ( inner_products.shape[0] ), numpy.int32 )
        j = 0;
        I[j] = next_index; j += 1;
        for i in xrange( I.shape[0] ):
            if ( i != next_index ):
                I[j] = i
                j += 1

        p[lu_row:N,:] = permute_matrix_rows( p[lu_row:N,:], I )

        # Permute rows of l
        l[lu_row:N,:lu_row] = \
            permute_matrix_rows( l[lu_row:N,:lu_row], I )
        
        # Update l with inner product information
        l[lu_row:N,lu_row] = inner_products;

        # Compute inner products with rows above
        u[:lu_row,lu_row] = dot( W[:lu_row,:], row );

        # allocate enough memory to store new information
        if v.shape[0] < v_index+current_dim:
            v.resize( v.shape[0]+1000, 1 )
        
        # Save current information
        v[v_index:v_index+current_dim,0] = row

        # Update counters
        v_index = v_index + current_dim;
        k[lu_row] = k_counter
        lu_row += 1

        if rnk < 2:
            k_counter += 1
            find_rank = True
        else:
            rnk -= 1

    # Chop off parts of unnecessarily allocated vector v
    v = numpy.resize( v, ( v_index ) );
        
    # Make matrix H:
    H = get_least_polynomial_coefficients( v, num_dims, num_pts, k, 
                                           basis_indices )

    return l,u,p,H,v,k,basis_indices_list