Exemple #1
0
def get_lr_scheduler(scheduler='hybrid'):
    if scheduler == 'fixed':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif scheduler == 'clr':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import CyclicLR
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr,
                              max_epochs=args.epochs,
                              power=args.power)
    elif scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max,
                                cycle_len=args.cycle_len)
    elif scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    else:
        print_error_message('{} scheduler Not supported'.format(scheduler))
        exit()

    print_info_message(lr_scheduler)

    return lr_scheduler
Exemple #2
0
def main(args):
    crop_size = args.crop_size
    assert isinstance(crop_size, tuple)
    print_info_message(
        'Running Model at image resolution {}x{} with batch size {}'.format(
            crop_size[0], crop_size[1], args.batch_size))
    if not os.path.isdir(args.savedir):
        os.makedirs(args.savedir)

    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus > 0 else 'cpu'

    if args.dataset == 'pascal':
        from data_loader.segmentation.voc import VOCSegmentation, VOC_CLASS_LIST
        train_dataset = VOCSegmentation(root=args.data_path,
                                        train=True,
                                        crop_size=crop_size,
                                        scale=args.scale,
                                        coco_root_dir=args.coco_path)
        val_dataset = VOCSegmentation(root=args.data_path,
                                      train=False,
                                      crop_size=crop_size,
                                      scale=args.scale)
        seg_classes = len(VOC_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
    elif args.dataset == 'city':
        from data_loader.segmentation.cityscapes import CityscapesSegmentation, CITYSCAPE_CLASS_LIST
        train_dataset = CityscapesSegmentation(root=args.data_path,
                                               train=True,
                                               size=crop_size,
                                               scale=args.scale,
                                               coarse=args.coarse)
        val_dataset = CityscapesSegmentation(root=args.data_path,
                                             train=False,
                                             size=crop_size,
                                             scale=args.scale,
                                             coarse=False)
        seg_classes = len(CITYSCAPE_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
        class_wts[0] = 2.8149201869965
        class_wts[1] = 6.9850029945374
        class_wts[2] = 3.7890393733978
        class_wts[3] = 9.9428062438965
        class_wts[4] = 9.7702074050903
        class_wts[5] = 9.5110931396484
        class_wts[6] = 10.311357498169
        class_wts[7] = 10.026463508606
        class_wts[8] = 4.6323022842407
        class_wts[9] = 9.5608062744141
        class_wts[10] = 7.8698215484619
        class_wts[11] = 9.5168733596802
        class_wts[12] = 10.373730659485
        class_wts[13] = 6.6616044044495
        class_wts[14] = 10.260489463806
        class_wts[15] = 10.287888526917
        class_wts[16] = 10.289801597595
        class_wts[17] = 10.405355453491
        class_wts[18] = 10.138095855713
        class_wts[19] = 0.0

    elif args.dataset == 'greenhouse':
        print(args.use_depth)
        from data_loader.segmentation.greenhouse import GreenhouseRGBDSegmentation, GreenhouseDepth, GREENHOUSE_CLASS_LIST
        train_dataset = GreenhouseDepth(root=args.data_path,
                                        list_name='train_depth_ae.txt',
                                        train=True,
                                        size=crop_size,
                                        scale=args.scale,
                                        use_filter=True)
        val_dataset = GreenhouseRGBDSegmentation(root=args.data_path,
                                                 list_name='val_depth_ae.txt',
                                                 train=False,
                                                 size=crop_size,
                                                 scale=args.scale,
                                                 use_depth=True)
        class_weights = np.load('class_weights.npy')[:4]
        print(class_weights)
        class_wts = torch.from_numpy(class_weights).float().to(device)

        seg_classes = len(GREENHOUSE_CLASS_LIST)
    else:
        print_error_message('Dataset: {} not yet supported'.format(
            args.dataset))
        exit(-1)

    print_info_message('Training samples: {}'.format(len(train_dataset)))
    print_info_message('Validation samples: {}'.format(len(val_dataset)))

    from model.autoencoder.depth_autoencoder import espnetv2_autoenc
    args.classes = 3
    model = espnetv2_autoenc(args)

    train_params = [{
        'params': model.get_basenet_params(),
        'lr': args.lr * args.lr_mult
    }]

    optimizer = optim.SGD(train_params,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    num_params = model_parameters(model)
    flops = compute_flops(model,
                          input=torch.Tensor(1, 1, crop_size[0], crop_size[1]))
    print_info_message(
        'FLOPs for an input of size {}x{}: {:.2f} million'.format(
            crop_size[0], crop_size[1], flops))
    print_info_message('Network Parameters: {:.2f} million'.format(num_params))

    writer = SummaryWriter(log_dir=args.savedir,
                           comment='Training and Validation logs')
    try:
        writer.add_graph(model,
                         input_to_model=torch.Tensor(1, 3, crop_size[0],
                                                     crop_size[1]))
    except:
        print_log_message(
            "Not able to generate the graph. Likely because your model is not supported by ONNX"
        )

    start_epoch = 0

    print('device : ' + device)

    #criterion = nn.CrossEntropyLoss(weight=class_wts, reduction='none', ignore_index=args.ignore_idx)
    #criterion = SegmentationLoss(n_classes=seg_classes, loss_type=args.loss_type,
    #                             device=device, ignore_idx=args.ignore_idx,
    #                             class_wts=class_wts.to(device))
    criterion = nn.MSELoss()
    # criterion = nn.L1Loss()

    if num_gpus >= 1:
        if num_gpus == 1:
            # for a single GPU, we do not need DataParallel wrapper for Criteria.
            # So, falling back to its internal wrapper
            from torch.nn.parallel import DataParallel
            model = DataParallel(model)
            model = model.cuda()
            criterion = criterion.cuda()
        else:
            from utilities.parallel_wrapper import DataParallelModel, DataParallelCriteria
            model = DataParallelModel(model)
            model = model.cuda()
            criterion = DataParallelCriteria(criterion)
            criterion = criterion.cuda()

        if torch.backends.cudnn.is_available():
            import torch.backends.cudnn as cudnn
            cudnn.benchmark = True
            cudnn.deterministic = True

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=args.workers)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=args.workers)

    if args.scheduler == 'fixed':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif args.scheduler == 'clr':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import CyclicLR
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr,
                              max_epochs=args.epochs,
                              power=args.power)
    elif args.scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max,
                                cycle_len=args.cycle_len)
    elif args.scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    else:
        print_error_message('{} scheduler Not supported'.format(
            args.scheduler))
        exit()

    print_info_message(lr_scheduler)

    with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
        import json
        arg_dict = vars(args)
        arg_dict['model_params'] = '{} '.format(num_params)
        arg_dict['flops'] = '{} '.format(flops)
        json.dump(arg_dict, outfile)

    extra_info_ckpt = '{}_{}_{}'.format(args.model, args.s, crop_size[0])
    best_loss = 0.0
    for epoch in range(start_epoch, args.epochs):
        lr_base = lr_scheduler.step(epoch)
        # set the optimizer with the learning rate
        # This can be done inside the MyLRScheduler
        lr_seg = lr_base * args.lr_mult
        optimizer.param_groups[0]['lr'] = lr_seg
        # optimizer.param_groups[1]['lr'] = lr_seg

        # Train
        model.train()
        losses = AverageMeter()
        for i, batch in enumerate(train_loader):
            inputs = batch[1].to(device=device)  # Depth
            target = batch[0].to(device=device)  # RGB

            outputs = model(inputs)

            if device == 'cuda':
                loss = criterion(outputs, target).mean()
                if isinstance(outputs, (list, tuple)):
                    target_dev = outputs[0].device
                    outputs = gather(outputs, target_device=target_dev)
            else:
                loss = criterion(outputs, target)

            losses.update(loss.item(), inputs.size(0))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            #             if not (i % 10):
            #                 print("Step {}, write images".format(i))
            #                 image_grid = torchvision.utils.make_grid(outputs.data.cpu()).numpy()
            #                 writer.add_image('Autoencoder/results/train', image_grid, len(train_loader) * epoch + i)

            writer.add_scalar('Autoencoder/Loss/train', loss.item(),
                              len(train_loader) * epoch + i)

            print_info_message('Running batch {}/{} of epoch {}'.format(
                i + 1, len(train_loader), epoch + 1))

        train_loss = losses.avg

        writer.add_scalar('Autoencoder/LR/seg', round(lr_seg, 6), epoch)

        # Val
        if epoch % 5 == 0:
            losses = AverageMeter()
            with torch.no_grad():
                for i, batch in enumerate(val_loader):
                    inputs = batch[2].to(device=device)  # Depth
                    target = batch[0].to(device=device)  # RGB

                    outputs = model(inputs)

                    if device == 'cuda':
                        loss = criterion(outputs, target)  # .mean()
                        if isinstance(outputs, (list, tuple)):
                            target_dev = outputs[0].device
                            outputs = gather(outputs, target_device=target_dev)
                    else:
                        loss = criterion(outputs, target)

                    losses.update(loss.item(), inputs.size(0))

                    image_grid = torchvision.utils.make_grid(
                        outputs.data.cpu()).numpy()
                    writer.add_image('Autoencoder/results/val', image_grid,
                                     epoch)
                    image_grid = torchvision.utils.make_grid(
                        inputs.data.cpu()).numpy()
                    writer.add_image('Autoencoder/inputs/val', image_grid,
                                     epoch)
                    image_grid = torchvision.utils.make_grid(
                        target.data.cpu()).numpy()
                    writer.add_image('Autoencoder/target/val', image_grid,
                                     epoch)

            val_loss = losses.avg

            print_info_message(
                'Running epoch {} with learning rates: base_net {:.6f}, segment_net {:.6f}'
                .format(epoch, lr_base, lr_seg))

            # remember best miou and save checkpoint
            is_best = val_loss < best_loss
            best_loss = min(val_loss, best_loss)

            weights_dict = model.module.state_dict(
            ) if device == 'cuda' else model.state_dict()
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.model,
                    'state_dict': weights_dict,
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                }, is_best, args.savedir, extra_info_ckpt)

            writer.add_scalar('Autoencoder/Loss/val', val_loss, epoch)

    writer.close()
def main(args):
    crop_size = args.crop_size
    assert isinstance(crop_size, tuple)
    print_info_message(
        'Running Model at image resolution {}x{} with batch size {}'.format(
            crop_size[0], crop_size[1], args.batch_size))
    if not os.path.isdir(args.savedir):
        os.makedirs(args.savedir)

    if args.dataset == 'pascal':
        from data_loader.segmentation.voc import VOCSegmentation, VOC_CLASS_LIST
        train_dataset = VOCSegmentation(root=args.data_path,
                                        train=True,
                                        crop_size=crop_size,
                                        scale=args.scale,
                                        coco_root_dir=args.coco_path)
        val_dataset = VOCSegmentation(root=args.data_path,
                                      train=False,
                                      crop_size=crop_size,
                                      scale=args.scale)
        seg_classes = len(VOC_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
    elif args.dataset == 'city':
        from data_loader.segmentation.cityscapes import CityscapesSegmentation, CITYSCAPE_CLASS_LIST
        train_dataset = CityscapesSegmentation(root=args.data_path,
                                               train=True,
                                               size=crop_size,
                                               scale=args.scale,
                                               coarse=args.coarse)
        val_dataset = CityscapesSegmentation(root=args.data_path,
                                             train=False,
                                             size=crop_size,
                                             scale=args.scale,
                                             coarse=False)
        seg_classes = len(CITYSCAPE_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
        class_wts[0] = 2.8149201869965
        class_wts[1] = 6.9850029945374
        class_wts[2] = 3.7890393733978
        class_wts[3] = 9.9428062438965
        class_wts[4] = 9.7702074050903
        class_wts[5] = 9.5110931396484
        class_wts[6] = 10.311357498169
        class_wts[7] = 10.026463508606
        class_wts[8] = 4.6323022842407
        class_wts[9] = 9.5608062744141
        class_wts[10] = 7.8698215484619
        class_wts[11] = 9.5168733596802
        class_wts[12] = 10.373730659485
        class_wts[13] = 6.6616044044495
        class_wts[14] = 10.260489463806
        class_wts[15] = 10.287888526917
        class_wts[16] = 10.289801597595
        class_wts[17] = 10.405355453491
        class_wts[18] = 10.138095855713
        class_wts[19] = 0.0
    else:
        print_error_message('Dataset: {} not yet supported'.format(
            args.dataset))
        exit(-1)

    print_info_message('Training samples: {}'.format(len(train_dataset)))
    print_info_message('Validation samples: {}'.format(len(val_dataset)))

    if args.model == 'espnetv2':
        from model.segmentation.espnetv2 import espnetv2_seg
        args.classes = seg_classes
        model = espnetv2_seg(args)
    elif args.model == 'dicenet':
        from model.segmentation.dicenet import dicenet_seg
        model = dicenet_seg(args, classes=seg_classes)
    else:
        print_error_message('Arch: {} not yet supported'.format(args.model))
        exit(-1)

    if args.finetune:
        if os.path.isfile(args.finetune):
            print_info_message('Loading weights for finetuning from {}'.format(
                args.finetune))
            weight_dict = torch.load(args.finetune,
                                     map_location=torch.device(device='cpu'))
            model.load_state_dict(weight_dict)
            print_info_message('Done')
        else:
            print_warning_message('No file for finetuning. Please check.')

    if args.freeze_bn:
        print_info_message('Freezing batch normalization layers')
        for m in model.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
                m.weight.requires_grad = False
                m.bias.requires_grad = False

    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus > 0 else 'cpu'

    train_params = [{
        'params': model.get_basenet_params(),
        'lr': args.lr
    }, {
        'params': model.get_segment_params(),
        'lr': args.lr * args.lr_mult
    }]

    optimizer = optim.SGD(train_params,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    num_params = model_parameters(model)
    flops = compute_flops(model,
                          input=torch.Tensor(1, 3, crop_size[0], crop_size[1]))
    print_info_message(
        'FLOPs for an input of size {}x{}: {:.2f} million'.format(
            crop_size[0], crop_size[1], flops))
    print_info_message('Network Parameters: {:.2f} million'.format(num_params))

    writer = SummaryWriter(log_dir=args.savedir,
                           comment='Training and Validation logs')
    try:
        writer.add_graph(model,
                         input_to_model=torch.Tensor(1, 3, crop_size[0],
                                                     crop_size[1]))
    except:
        print_log_message(
            "Not able to generate the graph. Likely because your model is not supported by ONNX"
        )

    start_epoch = 0
    best_miou = 0.0
    if args.resume:
        if os.path.isfile(args.resume):
            print_info_message("=> loading checkpoint '{}'".format(
                args.resume))
            checkpoint = torch.load(args.resume,
                                    map_location=torch.device('cpu'))
            start_epoch = checkpoint['epoch']
            best_miou = checkpoint['best_miou']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print_info_message("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print_warning_message("=> no checkpoint found at '{}'".format(
                args.resume))

    #criterion = nn.CrossEntropyLoss(weight=class_wts, reduction='none', ignore_index=args.ignore_idx)
    criterion = SegmentationLoss(n_classes=seg_classes,
                                 loss_type=args.loss_type,
                                 device=device,
                                 ignore_idx=args.ignore_idx,
                                 class_wts=class_wts.to(device))

    if num_gpus >= 1:
        if num_gpus == 1:
            # for a single GPU, we do not need DataParallel wrapper for Criteria.
            # So, falling back to its internal wrapper
            from torch.nn.parallel import DataParallel
            model = DataParallel(model)
            model = model.cuda()
            criterion = criterion.cuda()
        else:
            from utilities.parallel_wrapper import DataParallelModel, DataParallelCriteria
            model = DataParallelModel(model)
            model = model.cuda()
            criterion = DataParallelCriteria(criterion)
            criterion = criterion.cuda()

        if torch.backends.cudnn.is_available():
            import torch.backends.cudnn as cudnn
            cudnn.benchmark = True
            cudnn.deterministic = True

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=args.workers)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=args.workers)

    if args.scheduler == 'fixed':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif args.scheduler == 'clr':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import CyclicLR
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr,
                              max_epochs=args.epochs,
                              power=args.power)
    elif args.scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max,
                                cycle_len=args.cycle_len)
    elif args.scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    else:
        print_error_message('{} scheduler Not supported'.format(
            args.scheduler))
        exit()

    print_info_message(lr_scheduler)

    with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
        import json
        arg_dict = vars(args)
        arg_dict['model_params'] = '{} '.format(num_params)
        arg_dict['flops'] = '{} '.format(flops)
        json.dump(arg_dict, outfile)

    extra_info_ckpt = '{}_{}_{}'.format(args.model, args.s, crop_size[0])
    for epoch in range(start_epoch, args.epochs):
        lr_base = lr_scheduler.step(epoch)
        # set the optimizer with the learning rate
        # This can be done inside the MyLRScheduler
        lr_seg = lr_base * args.lr_mult
        optimizer.param_groups[0]['lr'] = lr_base
        optimizer.param_groups[1]['lr'] = lr_seg

        print_info_message(
            'Running epoch {} with learning rates: base_net {:.6f}, segment_net {:.6f}'
            .format(epoch, lr_base, lr_seg))
        miou_train, train_loss = train(model,
                                       train_loader,
                                       optimizer,
                                       criterion,
                                       seg_classes,
                                       epoch,
                                       device=device)
        miou_val, val_loss = val(model,
                                 val_loader,
                                 criterion,
                                 seg_classes,
                                 device=device)

        # remember best miou and save checkpoint
        is_best = miou_val > best_miou
        best_miou = max(miou_val, best_miou)

        weights_dict = model.module.state_dict(
        ) if device == 'cuda' else model.state_dict()
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.model,
                'state_dict': weights_dict,
                'best_miou': best_miou,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.savedir, extra_info_ckpt)

        writer.add_scalar('Segmentation/LR/base', round(lr_base, 6), epoch)
        writer.add_scalar('Segmentation/LR/seg', round(lr_seg, 6), epoch)
        writer.add_scalar('Segmentation/Loss/train', train_loss, epoch)
        writer.add_scalar('Segmentation/Loss/val', val_loss, epoch)
        writer.add_scalar('Segmentation/mIOU/train', miou_train, epoch)
        writer.add_scalar('Segmentation/mIOU/val', miou_val, epoch)
        writer.add_scalar('Segmentation/Complexity/Flops', best_miou,
                          math.ceil(flops))
        writer.add_scalar('Segmentation/Complexity/Params', best_miou,
                          math.ceil(num_params))

    writer.close()
Exemple #4
0
def main(args):
    crop_size = args.crop_size
    assert isinstance(crop_size, tuple)
    print_info_message(
        'Running Model at image resolution {}x{} with batch size {}'.format(
            crop_size[0], crop_size[1], args.batch_size))
    if not os.path.isdir(args.savedir):
        os.makedirs(args.savedir)

    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus > 0 else 'cpu'

    if args.dataset == 'greenhouse':
        print(args.use_depth)
        from data_loader.segmentation.greenhouse import GreenhouseRGBDSegCls, GREENHOUSE_CLASS_LIST
        train_dataset = GreenhouseRGBDSegCls(
            root=args.data_path,
            list_name='train_greenhouse_mult.txt',
            train=True,
            size=crop_size,
            scale=args.scale,
            use_depth=args.use_depth)
        val_dataset = GreenhouseRGBDSegCls(root=args.data_path,
                                           list_name='val_greenhouse_mult.txt',
                                           train=False,
                                           size=crop_size,
                                           scale=args.scale,
                                           use_depth=args.use_depth)
        class_weights = np.load('class_weights.npy')[:4]
        print(class_weights)
        class_wts = torch.from_numpy(class_weights).float().to(device)

        seg_classes = len(GREENHOUSE_CLASS_LIST)
        color_encoding = OrderedDict([('end_of_plant', (0, 255, 0)),
                                      ('other_part_of_plant', (0, 255, 255)),
                                      ('artificial_objects', (255, 0, 0)),
                                      ('ground', (255, 255, 0)),
                                      ('background', (0, 0, 0))])
    else:
        print_error_message('Dataset: {} not yet supported'.format(
            args.dataset))
        exit(-1)

    print_info_message('Training samples: {}'.format(len(train_dataset)))
    print_info_message('Validation samples: {}'.format(len(val_dataset)))

    if args.model == 'espdnet':
        from model.segmentation.espdnet_mult import espdnet_mult
        args.classes = seg_classes
        args.cls_classes = 5
        model = espdnet_mult(args)
    else:
        print_error_message('Arch: {} not yet supported'.format(args.model))
        exit(-1)

    if args.finetune:
        if os.path.isfile(args.finetune):
            print_info_message('Loading weights for finetuning from {}'.format(
                args.finetune))
            weight_dict = torch.load(args.finetune,
                                     map_location=torch.device(device='cpu'))
            model.load_state_dict(weight_dict)
            print_info_message('Done')
        else:
            print_warning_message('No file for finetuning. Please check.')

    if args.freeze_bn:
        print_info_message('Freezing batch normalization layers')
        for m in model.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
                m.weight.requires_grad = False
                m.bias.requires_grad = False

    if args.use_depth:
        train_params = [{
            'params': model.get_basenet_params(),
            'lr': args.lr
        }, {
            'params': model.get_segment_params(),
            'lr': args.lr * args.lr_mult
        }, {
            'params': model.get_depth_encoder_params(),
            'lr': args.lr
        }]
    else:
        train_params = [{
            'params': model.get_basenet_params(),
            'lr': args.lr
        }, {
            'params': model.get_segment_params(),
            'lr': args.lr * args.lr_mult
        }]

    optimizer = optim.SGD(train_params,
                          lr=args.lr * args.lr_mult,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    num_params = model_parameters(model)
    flops = compute_flops(model,
                          input=torch.Tensor(1, 3, crop_size[0], crop_size[1]))
    print_info_message(
        'FLOPs for an input of size {}x{}: {:.2f} million'.format(
            crop_size[0], crop_size[1], flops))
    print_info_message('Network Parameters: {:.2f} million'.format(num_params))

    writer = SummaryWriter(log_dir=args.savedir,
                           comment='Training and Validation logs')
    try:
        writer.add_graph(model,
                         input_to_model=torch.Tensor(1, 3, crop_size[0],
                                                     crop_size[1]))
    except:
        print_log_message(
            "Not able to generate the graph. Likely because your model is not supported by ONNX"
        )

    start_epoch = 0
    best_miou = 0.0
    if args.resume:
        if os.path.isfile(args.resume):
            print_info_message("=> loading checkpoint '{}'".format(
                args.resume))
            checkpoint = torch.load(args.resume,
                                    map_location=torch.device('cpu'))
            start_epoch = checkpoint['epoch']
            best_miou = checkpoint['best_miou']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print_info_message("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print_warning_message("=> no checkpoint found at '{}'".format(
                args.resume))

    print('device : ' + device)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=args.workers)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=args.workers)

    cls_class_weight = calc_cls_class_weight(train_loader, 5)
    print(cls_class_weight)

    #criterion = nn.CrossEntropyLoss(weight=class_wts, reduction='none', ignore_index=args.ignore_idx)
    criterion_seg = SegmentationLoss(n_classes=seg_classes,
                                     loss_type=args.loss_type,
                                     device=device,
                                     ignore_idx=args.ignore_idx,
                                     class_wts=class_wts.to(device))

    criterion_cls = nn.CrossEntropyLoss(
        weight=torch.from_numpy(cls_class_weight).float().to(device))

    if num_gpus >= 1:
        if num_gpus == 1:
            # for a single GPU, we do not need DataParallel wrapper for Criteria.
            # So, falling back to its internal wrapper
            from torch.nn.parallel import DataParallel
            model = DataParallel(model)
            model = model.cuda()
            criterion_seg = criterion_seg.cuda()
        else:
            from utilities.parallel_wrapper import DataParallelModel, DataParallelCriteria
            model = DataParallelModel(model)
            model = model.cuda()
            criterion_seg = DataParallelCriteria(criterion_seg)
            criterion_seg = criterion_seg.cuda()

        criterion_cls = criterion_cls.cuda()

        if torch.backends.cudnn.is_available():
            import torch.backends.cudnn as cudnn
            cudnn.benchmark = True
            cudnn.deterministic = True

    if args.scheduler == 'fixed':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif args.scheduler == 'clr':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import CyclicLR
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr,
                              max_epochs=args.epochs,
                              power=args.power)
    elif args.scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max,
                                cycle_len=args.cycle_len)
    elif args.scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    else:
        print_error_message('{} scheduler Not supported'.format(
            args.scheduler))
        exit()

    print_info_message(lr_scheduler)

    with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
        import json
        arg_dict = vars(args)
        arg_dict['model_params'] = '{} '.format(num_params)
        arg_dict['flops'] = '{} '.format(flops)
        json.dump(arg_dict, outfile)

    extra_info_ckpt = '{}_{}_{}'.format(args.model, args.s, crop_size[0])
    for epoch in range(start_epoch, args.epochs):
        lr_base = lr_scheduler.step(epoch)
        # set the optimizer with the learning rate
        # This can be done inside the MyLRScheduler
        lr_seg = lr_base * args.lr_mult
        optimizer.param_groups[0]['lr'] = lr_base
        optimizer.param_groups[1]['lr'] = lr_seg
        if args.use_depth:
            optimizer.param_groups[2]['lr'] = lr_base

        print_info_message(
            'Running epoch {} with learning rates: base_net {:.6f}, segment_net {:.6f}'
            .format(epoch, lr_base, lr_seg))
        miou_train, train_loss, train_seg_loss, train_cls_loss = train(
            model,
            train_loader,
            optimizer,
            criterion_seg,
            seg_classes,
            epoch,
            criterion_cls,
            device=device,
            use_depth=args.use_depth)
        miou_val, val_loss, val_seg_loss, val_cls_loss = val(
            model,
            val_loader,
            criterion_seg,
            criterion_cls,
            seg_classes,
            device=device,
            use_depth=args.use_depth)

        batch = iter(val_loader).next()
        if args.use_depth:
            in_training_visualization_2(model,
                                        images=batch[0].to(device=device),
                                        depths=batch[2].to(device=device),
                                        labels=batch[1].to(device=device),
                                        class_encoding=color_encoding,
                                        writer=writer,
                                        epoch=epoch,
                                        data='Segmentation',
                                        device=device)
        else:
            in_training_visualization_2(model,
                                        images=batch[0].to(device=device),
                                        labels=batch[1].to(device=device),
                                        class_encoding=color_encoding,
                                        writer=writer,
                                        epoch=epoch,
                                        data='Segmentation',
                                        device=device)


#            image_grid = torchvision.utils.make_grid(outputs.data.cpu()).numpy()
#            writer.add_image('Segmentation/results/val', image_grid, epoch)

# remember best miou and save checkpoint
        is_best = miou_val > best_miou
        best_miou = max(miou_val, best_miou)

        weights_dict = model.module.state_dict(
        ) if device == 'cuda' else model.state_dict()
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.model,
                'state_dict': weights_dict,
                'best_miou': best_miou,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.savedir, extra_info_ckpt)

        writer.add_scalar('Segmentation/LR/base', round(lr_base, 6), epoch)
        writer.add_scalar('Segmentation/LR/seg', round(lr_seg, 6), epoch)
        writer.add_scalar('Segmentation/Loss/train', train_loss, epoch)
        writer.add_scalar('Segmentation/SegLoss/train', train_seg_loss, epoch)
        writer.add_scalar('Segmentation/ClsLoss/train', train_cls_loss, epoch)
        writer.add_scalar('Segmentation/Loss/val', val_loss, epoch)
        writer.add_scalar('Segmentation/SegLoss/val', val_seg_loss, epoch)
        writer.add_scalar('Segmentation/ClsLoss/val', val_cls_loss, epoch)
        writer.add_scalar('Segmentation/mIOU/train', miou_train, epoch)
        writer.add_scalar('Segmentation/mIOU/val', miou_val, epoch)
        writer.add_scalar('Segmentation/Complexity/Flops', best_miou,
                          math.ceil(flops))
        writer.add_scalar('Segmentation/Complexity/Params', best_miou,
                          math.ceil(num_params))

    writer.close()
Exemple #5
0
def main(args):
    # -----------------------------------------------------------------------------
    # Create model
    # -----------------------------------------------------------------------------
    if args.model == 'dicenet':
        from model.classification import dicenet as net
        model = net.CNNModel(args)
    elif args.model == 'espnetv2':
        from model.classification import espnetv2 as net
        model = net.EESPNet(args)
    elif args.model == 'shufflenetv2':
        from model.classification import shufflenetv2 as net
        model = net.CNNModel(args)
    else:
        print_error_message('Model {} not yet implemented'.format(args.model))
        exit()

    if args.finetune:
        # laod the weights for finetuning
        if os.path.isfile(args.weights_ft):
            pretrained_dict = torch.load(args.weights_ft,
                                         map_location=torch.device('cpu'))
            print_info_message('Loading pretrained basenet model weights')
            model_dict = model.state_dict()

            overlap_dict = {
                k: v
                for k, v in model_dict.items() if k in pretrained_dict
            }

            total_size_overlap = 0
            for k, v in enumerate(overlap_dict):
                total_size_overlap += torch.numel(overlap_dict[v])

            total_size_pretrain = 0
            for k, v in enumerate(pretrained_dict):
                total_size_pretrain += torch.numel(pretrained_dict[v])

            if len(overlap_dict) == 0:
                print_error_message(
                    'No overlaping weights between model file and pretrained weight file. Please check'
                )

            print_info_message('Overlap ratio of weights: {:.2f} %'.format(
                (total_size_overlap * 100.0) / total_size_pretrain))

            model_dict.update(overlap_dict)
            model.load_state_dict(model_dict, strict=False)
            print_info_message('Pretrained basenet model loaded!!')
        else:
            print_error_message('Unable to find the weights: {}'.format(
                args.weights_ft))

    # -----------------------------------------------------------------------------
    # Writer for logging
    # -----------------------------------------------------------------------------
    if not os.path.isdir(args.savedir):
        os.makedirs(args.savedir)
    writer = SummaryWriter(log_dir=args.savedir,
                           comment='Training and Validation logs')
    try:
        writer.add_graph(model,
                         input_to_model=torch.randn(1, 70, args.inpSize,
                                                    args.inpSize))
    except:
        print_log_message(
            "Not able to generate the graph. Likely because your model is not supported by ONNX"
        )

    # network properties
    num_params = model_parameters(model)
    flops = compute_flops(model)
    print_info_message('FLOPs: {:.2f} million'.format(flops))
    print_info_message('Network Parameters: {:.2f} million'.format(num_params))

    # -----------------------------------------------------------------------------
    # Optimizer
    # -----------------------------------------------------------------------------

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    best_acc = 0.0
    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus >= 1 else 'cpu'
    if args.resume:
        if os.path.isfile(args.resume):
            print_info_message("=> loading checkpoint '{}'".format(
                args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_acc = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'],
                                  map_location=torch.device(device))
            optimizer.load_state_dict(checkpoint['optimizer'])
            print_info_message("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print_warning_message("=> no checkpoint found at '{}'".format(
                args.resume))

    # -----------------------------------------------------------------------------
    # Loss Fn
    # -----------------------------------------------------------------------------
    if args.dataset == 'imagenet':
        criterion = nn.CrossEntropyLoss()
        acc_metric = 'Top-1'
    elif args.dataset == 'coco':
        criterion = nn.BCEWithLogitsLoss()
        acc_metric = 'F1'
    elif args.dataset == 'Heart':
        criterion = nn.L1Loss()
        acc_metric = 'Test'
    else:
        print_error_message('{} dataset not yet supported'.format(
            args.dataset))

    if num_gpus >= 1:
        model = torch.nn.DataParallel(model)
        model = model.cuda()
        criterion = criterion.cuda()
        if torch.backends.cudnn.is_available():
            import torch.backends.cudnn as cudnn
            cudnn.benchmark = True
            cudnn.deterministic = True

    # -----------------------------------------------------------------------------
    # Data Loaders
    # -----------------------------------------------------------------------------
    # Data loading code
    if args.dataset == 'imagenet':
        train_loader, val_loader = img_loader.data_loaders(args)
        # import the loaders too
        from utilities.train_eval_classification import train, validate
    elif args.dataset == 'coco':
        from data_loader.classification.coco import COCOClassification
        train_dataset = COCOClassification(root=args.data,
                                           split='train',
                                           year='2017',
                                           inp_size=args.inpSize,
                                           scale=args.scale,
                                           is_training=True)
        val_dataset = COCOClassification(root=args.data,
                                         split='val',
                                         year='2017',
                                         inp_size=args.inpSize,
                                         is_training=False)

        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   pin_memory=True,
                                                   num_workers=args.workers)
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 pin_memory=True,
                                                 num_workers=args.workers)

        # import the loaders too
        from utilities.train_eval_classification import train_multi as train
        from utilities.train_eval_classification import validate_multi as validate
    elif args.dataset == 'Heart':
        from utilities.train_eval_classification import train, validate

        def load_npy(npy_path):
            try:
                data = np.load(npy_path).item()
            except:
                data = np.load(npy_path)
            return data

        def loadData(data_path):
            npy_data = load_npy(data_path)
            signals = npy_data['signals']
            gts = npy_data['gts']
            return signals, gts

        ht_img_width, ht_img_height = args.inpSize, args.inpSize
        ht_batch_size = args.batch_size
        signal_length = args.channels
        signals_train, gts_train = loadData(
            '../DiCENeT/CardioNet/data_train/fps7_sample10_2D_train.npy')
        signals_val, gts_val = loadData(
            '../DiCENeT/CardioNet/data_train/fps7_sample10_2D_val.npy')
        from data_loader.classification.heart import HeartDataGenerator
        heart_train_data = HeartDataGenerator(signals_train, gts_train,
                                              ht_batch_size)
        # heart_train_data.squeeze
        heart_val_data = HeartDataGenerator(signals_val, gts_val,
                                            ht_batch_size)
        # heart_val_data.squeeze
        train_loader = torch.utils.data.DataLoader(heart_train_data,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   pin_memory=True,
                                                   num_workers=args.workers)
        val_loader = torch.utils.data.DataLoader(heart_val_data,
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 pin_memory=True,
                                                 num_workers=args.workers)

    else:
        print_error_message('{} dataset not yet supported'.format(
            args.dataset))

    # -----------------------------------------------------------------------------
    # LR schedulers
    # -----------------------------------------------------------------------------
    if args.scheduler == 'fixed':
        step_sizes = args.steps
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif args.scheduler == 'clr':
        from utilities.lr_scheduler import CyclicLR
        step_sizes = args.steps
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr, max_epochs=args.epochs)
    elif args.scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    elif args.scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max)
    else:
        print_error_message('Scheduler ({}) not yet implemented'.format(
            args.scheduler))
        exit()

    print_info_message(lr_scheduler)

    # set up the epoch variable in case resuming training
    if args.start_epoch != 0:
        for epoch in range(args.start_epoch):
            lr_scheduler.step(epoch)

    with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
        import json
        arg_dict = vars(args)
        arg_dict['model_params'] = '{} '.format(num_params)
        arg_dict['flops'] = '{} '.format(flops)
        json.dump(arg_dict, outfile)

    # -----------------------------------------------------------------------------
    # Training and Val Loop
    # -----------------------------------------------------------------------------

    extra_info_ckpt = args.model + '_' + str(args.s)
    for epoch in range(args.start_epoch, args.epochs):
        lr_log = lr_scheduler.step(epoch)
        # set the optimizer with the learning rate
        # This can be done inside the MyLRScheduler
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr_log
        print_info_message("LR for epoch {} = {:.5f}".format(epoch, lr_log))
        train_acc, train_loss = train(data_loader=train_loader,
                                      model=model,
                                      criteria=criterion,
                                      optimizer=optimizer,
                                      epoch=epoch,
                                      device=device)
        # evaluate on validation set
        val_acc, val_loss = validate(data_loader=val_loader,
                                     model=model,
                                     criteria=criterion,
                                     device=device)

        # remember best prec@1 and save checkpoint
        is_best = val_acc > best_acc
        best_acc = max(val_acc, best_acc)

        weights_dict = model.module.state_dict(
        ) if device == 'cuda' else model.state_dict()
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'state_dict': weights_dict,
                'best_prec1': best_acc,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.savedir, extra_info_ckpt)

        writer.add_scalar('Classification/LR/learning_rate', lr_log, epoch)
        writer.add_scalar('Classification/Loss/Train', train_loss, epoch)
        writer.add_scalar('Classification/Loss/Val', val_loss, epoch)
        writer.add_scalar('Classification/{}/Train'.format(acc_metric),
                          train_acc, epoch)
        writer.add_scalar('Classification/{}/Val'.format(acc_metric), val_acc,
                          epoch)
        writer.add_scalar('Classification/Complexity/Top1_vs_flops', best_acc,
                          round(flops, 2))
        writer.add_scalar('Classification/Complexity/Top1_vs_params', best_acc,
                          round(num_params, 2))

    writer.close()
Exemple #6
0
def main(args):
    crop_size = args.crop_size
    assert isinstance(crop_size, tuple)
    print_info_message(
        'Running Model at image resolution {}x{} with batch size {}'.format(
            crop_size[0], crop_size[1], args.batch_size))
    if not os.path.isdir(args.savedir):
        os.makedirs(args.savedir)

    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus > 0 else 'cpu'

    if args.dataset == 'pascal':
        from data_loader.segmentation.voc import VOCSegmentation, VOC_CLASS_LIST
        train_dataset = VOCSegmentation(root=args.data_path,
                                        train=True,
                                        crop_size=crop_size,
                                        scale=args.scale,
                                        coco_root_dir=args.coco_path)
        val_dataset = VOCSegmentation(root=args.data_path,
                                      train=False,
                                      crop_size=crop_size,
                                      scale=args.scale)
        seg_classes = len(VOC_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
    elif args.dataset == 'city':
        from data_loader.segmentation.cityscapes import CityscapesSegmentation, CITYSCAPE_CLASS_LIST, color_encoding
        train_dataset = CityscapesSegmentation(root=args.data_path,
                                               train=True,
                                               coarse=False)
        val_dataset = CityscapesSegmentation(root=args.data_path,
                                             train=False,
                                             coarse=False)
        seg_classes = len(CITYSCAPE_CLASS_LIST)
        class_wts = torch.ones(seg_classes)
        class_wts[0] = 10 / 2.8149201869965
        class_wts[1] = 10 / 6.9850029945374
        class_wts[2] = 10 / 3.7890393733978
        class_wts[3] = 10 / 9.9428062438965
        class_wts[4] = 10 / 9.7702074050903
        class_wts[5] = 10 / 9.5110931396484
        class_wts[6] = 10 / 10.311357498169
        class_wts[7] = 10 / 10.026463508606
        class_wts[8] = 10 / 4.6323022842407
        class_wts[9] = 10 / 9.5608062744141
        class_wts[10] = 10 / 7.8698215484619
        class_wts[11] = 10 / 9.5168733596802
        class_wts[12] = 10 / 10.373730659485
        class_wts[13] = 10 / 6.6616044044495
        class_wts[14] = 10 / 10.260489463806
        class_wts[15] = 10 / 10.287888526917
        class_wts[16] = 10 / 10.289801597595
        class_wts[17] = 10 / 10.405355453491
        class_wts[18] = 10 / 10.138095855713
        class_wts[19] = 0.0

    elif args.dataset == 'greenhouse':
        print(args.use_depth)
        from data_loader.segmentation.greenhouse import GreenhouseRGBDSegmentation, GREENHOUSE_CLASS_LIST, color_encoding
        train_dataset = GreenhouseRGBDSegmentation(
            root=args.data_path,
            list_name=args.train_list,
            train=True,
            size=crop_size,
            scale=args.scale,
            use_depth=args.use_depth,
            use_traversable=args.greenhouse_use_trav)
        val_dataset = GreenhouseRGBDSegmentation(
            root=args.data_path,
            list_name=args.val_list,
            train=False,
            size=crop_size,
            scale=args.scale,
            use_depth=args.use_depth,
            use_traversable=args.greenhouse_use_trav)
        class_weights = np.load('class_weights.npy')  # [:4]
        print(class_weights)
        class_wts = torch.from_numpy(class_weights).float().to(device)

        print(GREENHOUSE_CLASS_LIST)
        seg_classes = len(GREENHOUSE_CLASS_LIST)
#        color_encoding = OrderedDict([
#            ('end_of_plant', (0, 255, 0)),
#            ('other_part_of_plant', (0, 255, 255)),
#            ('artificial_objects', (255, 0, 0)),
#            ('ground', (255, 255, 0)),
#            ('background', (0, 0, 0))
#        ])
    elif args.dataset == 'ishihara':
        print(args.use_depth)
        from data_loader.segmentation.ishihara_rgbd import IshiharaRGBDSegmentation, ISHIHARA_RGBD_CLASS_LIST
        train_dataset = IshiharaRGBDSegmentation(
            root=args.data_path,
            list_name='ishihara_rgbd_train.txt',
            train=True,
            size=crop_size,
            scale=args.scale,
            use_depth=args.use_depth)
        val_dataset = IshiharaRGBDSegmentation(
            root=args.data_path,
            list_name='ishihara_rgbd_val.txt',
            train=False,
            size=crop_size,
            scale=args.scale,
            use_depth=args.use_depth)

        seg_classes = len(ISHIHARA_RGBD_CLASS_LIST)

        class_wts = torch.ones(seg_classes)

        color_encoding = OrderedDict([('Unlabeled', (0, 0, 0)),
                                      ('Building', (70, 70, 70)),
                                      ('Fence', (190, 153, 153)),
                                      ('Others', (72, 0, 90)),
                                      ('Pedestrian', (220, 20, 60)),
                                      ('Pole', (153, 153, 153)),
                                      ('Road ', (157, 234, 50)),
                                      ('Road', (128, 64, 128)),
                                      ('Sidewalk', (244, 35, 232)),
                                      ('Vegetation', (107, 142, 35)),
                                      ('Car', (0, 0, 255)),
                                      ('Wall', (102, 102, 156)),
                                      ('Traffic ', (220, 220, 0))])
    elif args.dataset == 'sun':
        print(args.use_depth)
        from data_loader.segmentation.sun_rgbd import SUNRGBDSegmentation, SUN_RGBD_CLASS_LIST
        train_dataset = SUNRGBDSegmentation(root=args.data_path,
                                            list_name='sun_rgbd_train.txt',
                                            train=True,
                                            size=crop_size,
                                            ignore_idx=args.ignore_idx,
                                            scale=args.scale,
                                            use_depth=args.use_depth)
        val_dataset = SUNRGBDSegmentation(root=args.data_path,
                                          list_name='sun_rgbd_val.txt',
                                          train=False,
                                          size=crop_size,
                                          ignore_idx=args.ignore_idx,
                                          scale=args.scale,
                                          use_depth=args.use_depth)

        seg_classes = len(SUN_RGBD_CLASS_LIST)

        class_wts = torch.ones(seg_classes)

        color_encoding = OrderedDict([('Background', (0, 0, 0)),
                                      ('Bed', (0, 255, 0)),
                                      ('Books', (70, 70, 70)),
                                      ('Ceiling', (190, 153, 153)),
                                      ('Chair', (72, 0, 90)),
                                      ('Floor', (220, 20, 60)),
                                      ('Furniture', (153, 153, 153)),
                                      ('Objects', (157, 234, 50)),
                                      ('Picture', (128, 64, 128)),
                                      ('Sofa', (244, 35, 232)),
                                      ('Table', (107, 142, 35)),
                                      ('TV', (0, 0, 255)),
                                      ('Wall', (102, 102, 156)),
                                      ('Window', (220, 220, 0))])
    elif args.dataset == 'camvid':
        print(args.use_depth)
        from data_loader.segmentation.camvid import CamVidSegmentation, CAMVID_CLASS_LIST, color_encoding
        train_dataset = CamVidSegmentation(
            root=args.data_path,
            list_name='train_camvid.txt',
            train=True,
            size=crop_size,
            scale=args.scale,
            label_conversion=args.label_conversion,
            normalize=args.normalize)
        val_dataset = CamVidSegmentation(
            root=args.data_path,
            list_name='val_camvid.txt',
            train=False,
            size=crop_size,
            scale=args.scale,
            label_conversion=args.label_conversion,
            normalize=args.normalize)

        if args.label_conversion:
            from data_loader.segmentation.greenhouse import GREENHOUSE_CLASS_LIST, color_encoding
            seg_classes = len(GREENHOUSE_CLASS_LIST)
            class_wts = torch.ones(seg_classes)
        else:
            seg_classes = len(CAMVID_CLASS_LIST)
            tmp_loader = torch.utils.data.DataLoader(train_dataset,
                                                     batch_size=1,
                                                     shuffle=False)

            class_wts = calc_cls_class_weight(tmp_loader,
                                              seg_classes,
                                              inverted=True)
            class_wts = torch.from_numpy(class_wts).float().to(device)
            #            class_wts = torch.ones(seg_classes)
            print("class weights : {}".format(class_wts))

        args.use_depth = False
    elif args.dataset == 'forest':
        from data_loader.segmentation.freiburg_forest import FreiburgForestDataset, FOREST_CLASS_LIST, color_encoding
        train_dataset = FreiburgForestDataset(train=True,
                                              size=crop_size,
                                              scale=args.scale,
                                              normalize=args.normalize)
        val_dataset = FreiburgForestDataset(train=False,
                                            size=crop_size,
                                            scale=args.scale,
                                            normalize=args.normalize)

        seg_classes = len(FOREST_CLASS_LIST)
        tmp_loader = torch.utils.data.DataLoader(train_dataset,
                                                 batch_size=1,
                                                 shuffle=False)

        class_wts = calc_cls_class_weight(tmp_loader,
                                          seg_classes,
                                          inverted=True)
        class_wts = torch.from_numpy(class_wts).float().to(device)
        #        class_wts = torch.ones(seg_classes)
        print("class weights : {}".format(class_wts))

        args.use_depth = False
    else:
        print_error_message('Dataset: {} not yet supported'.format(
            args.dataset))
        exit(-1)

    print_info_message('Training samples: {}'.format(len(train_dataset)))
    print_info_message('Validation samples: {}'.format(len(val_dataset)))

    if args.model == 'espnetv2':
        from model.segmentation.espnetv2 import espnetv2_seg
        args.classes = seg_classes
        model = espnetv2_seg(args)
    elif args.model == 'espdnet':
        from model.segmentation.espdnet import espdnet_seg
        args.classes = seg_classes
        print("Trainable fusion : {}".format(args.trainable_fusion))
        print("Segmentation classes : {}".format(seg_classes))
        model = espdnet_seg(args)
    elif args.model == 'espdnetue':
        from model.segmentation.espdnet_ue import espdnetue_seg2
        args.classes = seg_classes
        print("Trainable fusion : {}".format(args.trainable_fusion))
        print("Segmentation classes : {}".format(seg_classes))
        model = espdnetue_seg2(args, fix_pyr_plane_proj=True)
    elif args.model == 'deeplabv3':
        # from model.segmentation.deeplabv3 import DeepLabV3
        from torchvision.models.segmentation.segmentation import deeplabv3_resnet101

        args.classes = seg_classes
        # model = DeepLabV3(seg_classes)
        model = deeplabv3_resnet101(num_classes=seg_classes, aux_loss=True)
        torch.backends.cudnn.enabled = False
    elif args.model == 'unet':
        from model.segmentation.unet import UNet
        model = UNet(in_channels=3, out_channels=seg_classes)
#        model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
#            in_channels=3, out_channels=seg_classes, init_features=32, pretrained=False)

    elif args.model == 'dicenet':
        from model.segmentation.dicenet import dicenet_seg
        model = dicenet_seg(args, classes=seg_classes)
    else:
        print_error_message('Arch: {} not yet supported'.format(args.model))
        exit(-1)

    if args.finetune:
        if os.path.isfile(args.finetune):
            print_info_message('Loading weights for finetuning from {}'.format(
                args.finetune))
            weight_dict = torch.load(args.finetune,
                                     map_location=torch.device(device='cpu'))
            model.load_state_dict(weight_dict)
            print_info_message('Done')
        else:
            print_warning_message('No file for finetuning. Please check.')

    if args.freeze_bn:
        print_info_message('Freezing batch normalization layers')
        for m in model.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
                m.weight.requires_grad = False
                m.bias.requires_grad = False

    if args.model == 'deeplabv3' or args.model == 'unet':
        train_params = [{'params': model.parameters(), 'lr': args.lr}]

    elif args.use_depth:
        train_params = [{
            'params': model.get_basenet_params(),
            'lr': args.lr
        }, {
            'params': model.get_segment_params(),
            'lr': args.lr * args.lr_mult
        }, {
            'params': model.get_depth_encoder_params(),
            'lr': args.lr * args.lr_mult
        }]
    else:
        train_params = [{
            'params': model.get_basenet_params(),
            'lr': args.lr
        }, {
            'params': model.get_segment_params(),
            'lr': args.lr * args.lr_mult
        }]

    optimizer = optim.SGD(train_params,
                          lr=args.lr * args.lr_mult,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    num_params = model_parameters(model)
    flops = compute_flops(model,
                          input=torch.Tensor(1, 3, crop_size[0], crop_size[1]))
    print_info_message(
        'FLOPs for an input of size {}x{}: {:.2f} million'.format(
            crop_size[0], crop_size[1], flops))
    print_info_message('Network Parameters: {:.2f} million'.format(num_params))

    writer = SummaryWriter(log_dir=args.savedir,
                           comment='Training and Validation logs')
    try:
        writer.add_graph(model, input_to_model=torch.Tensor(1, 3, 288, 480))
    except:
        print_log_message(
            "Not able to generate the graph. Likely because your model is not supported by ONNX"
        )

    start_epoch = 0
    best_miou = 0.0
    if args.resume:
        if os.path.isfile(args.resume):
            print_info_message("=> loading checkpoint '{}'".format(
                args.resume))
            checkpoint = torch.load(args.resume,
                                    map_location=torch.device('cpu'))
            start_epoch = checkpoint['epoch']
            best_miou = checkpoint['best_miou']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print_info_message("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print_warning_message("=> no checkpoint found at '{}'".format(
                args.resume))

    print('device : ' + device)

    #criterion = nn.CrossEntropyLoss(weight=class_wts, reduction='none', ignore_index=args.ignore_idx)
    criterion = SegmentationLoss(n_classes=seg_classes,
                                 loss_type=args.loss_type,
                                 device=device,
                                 ignore_idx=args.ignore_idx,
                                 class_wts=class_wts.to(device))
    nid_loss = NIDLoss(image_bin=32,
                       label_bin=seg_classes) if args.use_nid else None

    if num_gpus >= 1:
        if num_gpus == 1:
            # for a single GPU, we do not need DataParallel wrapper for Criteria.
            # So, falling back to its internal wrapper
            from torch.nn.parallel import DataParallel
            model = DataParallel(model)
            model = model.cuda()
            criterion = criterion.cuda()
            if args.use_nid:
                nid_loss.cuda()
        else:
            from utilities.parallel_wrapper import DataParallelModel, DataParallelCriteria
            model = DataParallelModel(model)
            model = model.cuda()
            criterion = DataParallelCriteria(criterion)
            criterion = criterion.cuda()
            if args.use_nid:
                nid_loss = DataParallelCriteria(nid_loss)
                nid_loss = nid_loss.cuda()

        if torch.backends.cudnn.is_available():
            import torch.backends.cudnn as cudnn
            cudnn.benchmark = True
            cudnn.deterministic = True

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=args.workers)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=20,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=args.workers)

    if args.scheduler == 'fixed':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import FixedMultiStepLR
        lr_scheduler = FixedMultiStepLR(base_lr=args.lr,
                                        steps=step_sizes,
                                        gamma=args.lr_decay)
    elif args.scheduler == 'clr':
        step_size = args.step_size
        step_sizes = [
            step_size * i
            for i in range(1, int(math.ceil(args.epochs / step_size)))
        ]
        from utilities.lr_scheduler import CyclicLR
        lr_scheduler = CyclicLR(min_lr=args.lr,
                                cycle_len=5,
                                steps=step_sizes,
                                gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        from utilities.lr_scheduler import PolyLR
        lr_scheduler = PolyLR(base_lr=args.lr,
                              max_epochs=args.epochs,
                              power=args.power)
    elif args.scheduler == 'hybrid':
        from utilities.lr_scheduler import HybirdLR
        lr_scheduler = HybirdLR(base_lr=args.lr,
                                max_epochs=args.epochs,
                                clr_max=args.clr_max,
                                cycle_len=args.cycle_len)
    elif args.scheduler == 'linear':
        from utilities.lr_scheduler import LinearLR
        lr_scheduler = LinearLR(base_lr=args.lr, max_epochs=args.epochs)
    else:
        print_error_message('{} scheduler Not supported'.format(
            args.scheduler))
        exit()

    print_info_message(lr_scheduler)

    with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
        import json
        arg_dict = vars(args)
        arg_dict['model_params'] = '{} '.format(num_params)
        arg_dict['flops'] = '{} '.format(flops)
        json.dump(arg_dict, outfile)

    extra_info_ckpt = '{}_{}_{}'.format(args.model, args.s, crop_size[0])
    for epoch in range(start_epoch, args.epochs):
        lr_base = lr_scheduler.step(epoch)
        # set the optimizer with the learning rate
        # This can be done inside the MyLRScheduler
        lr_seg = lr_base * args.lr_mult
        optimizer.param_groups[0]['lr'] = lr_base
        if len(optimizer.param_groups) > 1:
            optimizer.param_groups[1]['lr'] = lr_seg
        if args.use_depth:
            optimizer.param_groups[2]['lr'] = lr_base

        print_info_message(
            'Running epoch {} with learning rates: base_net {:.6f}, segment_net {:.6f}'
            .format(epoch, lr_base, lr_seg))

        if args.model == 'espdnetue' or (
            (args.model == 'deeplabv3' or args.model == 'unet')
                and args.use_aux):
            from utilities.train_eval_seg import train_seg_ue as train
            from utilities.train_eval_seg import val_seg_ue as val
        else:
            from utilities.train_eval_seg import train_seg as train
            from utilities.train_eval_seg import val_seg as val

        iou_train, train_loss = train(model,
                                      train_loader,
                                      optimizer,
                                      criterion,
                                      seg_classes,
                                      epoch,
                                      device=device,
                                      use_depth=args.use_depth,
                                      add_criterion=nid_loss)
        iou_val, val_loss = val(model,
                                val_loader,
                                criterion,
                                seg_classes,
                                device=device,
                                use_depth=args.use_depth,
                                add_criterion=nid_loss)

        batch_train = iter(train_loader).next()
        batch = iter(val_loader).next()
        if args.use_depth:
            in_training_visualization_img(
                model,
                images=batch_train[0].to(device=device),
                depths=batch_train[2].to(device=device),
                labels=batch_train[1].to(device=device),
                class_encoding=color_encoding,
                writer=writer,
                epoch=epoch,
                data='Segmentation/train',
                device=device)
            in_training_visualization_img(model,
                                          images=batch[0].to(device=device),
                                          depths=batch[2].to(device=device),
                                          labels=batch[1].to(device=device),
                                          class_encoding=color_encoding,
                                          writer=writer,
                                          epoch=epoch,
                                          data='Segmentation/val',
                                          device=device)

            image_grid = torchvision.utils.make_grid(
                batch[2].to(device=device).data.cpu()).numpy()
            print(type(image_grid))
            writer.add_image('Segmentation/depths', image_grid, epoch)
        else:
            in_training_visualization_img(
                model,
                images=batch_train[0].to(device=device),
                labels=batch_train[1].to(device=device),
                class_encoding=color_encoding,
                writer=writer,
                epoch=epoch,
                data='Segmentation/train',
                device=device)
            in_training_visualization_img(model,
                                          images=batch[0].to(device=device),
                                          labels=batch[1].to(device=device),
                                          class_encoding=color_encoding,
                                          writer=writer,
                                          epoch=epoch,
                                          data='Segmentation/val',
                                          device=device)


#            image_grid = torchvision.utils.make_grid(outputs.data.cpu()).numpy()
#            writer.add_image('Segmentation/results/val', image_grid, epoch)

# remember best miou and save checkpoint
        miou_val = iou_val[[1, 2, 3]].mean()
        is_best = miou_val > best_miou
        best_miou = max(miou_val, best_miou)

        weights_dict = model.module.state_dict(
        ) if device == 'cuda' else model.state_dict()
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.model,
                'state_dict': weights_dict,
                'best_miou': best_miou,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.savedir, extra_info_ckpt)

        writer.add_scalar('Segmentation/LR/base', round(lr_base, 6), epoch)
        writer.add_scalar('Segmentation/LR/seg', round(lr_seg, 6), epoch)
        writer.add_scalar('Segmentation/Loss/train', train_loss, epoch)
        writer.add_scalar('Segmentation/Loss/val', val_loss, epoch)
        writer.add_scalar('Segmentation/mIOU/train',
                          iou_train[[1, 2, 3]].mean(), epoch)
        writer.add_scalar('Segmentation/mIOU/val', miou_val, epoch)
        writer.add_scalar('Segmentation/plant_IOU/val', iou_val[1], epoch)
        writer.add_scalar('Segmentation/ao_IOU/val', iou_val[2], epoch)
        writer.add_scalar('Segmentation/ground_IOU/val', iou_val[3], epoch)
        writer.add_scalar('Segmentation/Complexity/Flops', best_miou,
                          math.ceil(flops))
        writer.add_scalar('Segmentation/Complexity/Params', best_miou,
                          math.ceil(num_params))

    writer.close()