Exemple #1
0
    def plot_all_roc(root_path, general_models, special_models, anomaly_name):
        mark_style = ['o', '^', 's', 'v']
        colors = ['purple', 'red', 'blue', 'green']
        ModelClass_dic = get_classes()

        f = plt.figure()
        for i,model_name in enumerate(special_models):
            model = ModelClass_dic[model_name](model_root=root_path)
            score_name = list(model.get_score_methods().keys())[0]
            d = load_object(os.path.join(model.model_path,'eval', 'ROC', anomaly_name, 'roc_score_' + score_name + '.pkl'))
            plt.plot(d['dBs'], d['aucs'], color=colors[-1], marker=mark_style[i], label=model_name+', score method - '+score_name)

        for i,model_name in enumerate(general_models):
            model = ModelClass_dic[model_name](model_root=root_path)
            score_methods_dic = model.get_score_methods()
            for j,score_name in enumerate(score_methods_dic.keys()):
                d = load_object(os.path.join(model.model_path,'eval', 'ROC', anomaly_name, 'roc_score_' + score_name + '.pkl'))
                plt.plot(d['dBs'], d['aucs'], color=colors[i], marker=mark_style[j], label=model_name+', score method - '+score_name)


        plt.ylim([0, 1])
        plt.xlabel('ISR in dB of anomaly', fontsize=18)
        plt.ylabel('AUC score', fontsize=18)
        plt.title(anomaly_name, fontsize=20)
        plt.legend()
        plt.gca().grid(True)
        f.set_size_inches(8, 6.5, forward=True)

        fig_path = os.path.join(root_path, '0_all_ROC', 'dB_vs_AUC_'+anomaly_name)

        save_fig(f, fig_path)
        plt.close()
Exemple #2
0
    def load_model(self):
        max_path = os.path.join(self.model_path, "cepstrum_max.pkl")
        scaler_path = os.path.join(self.model_path, "train_scaler.pkl")
        if use_scaling:
            self.scaler = load_object(scaler_path)

        self.cepstrum_max = load_object(max_path)
        self.loaded = True
Exemple #3
0
    def load_model(self):
        scaler_path = os.path.join(self.model_path, "train_scaler.pkl")
        params_path = os.path.join(self.model_path, "model_params.pkl")

        if use_scaling:
            self.scaler = load_object(scaler_path)

        params_dic = load_object(params_path)
        self.freqs = params_dic['freqs']
        self.means = params_dic['means']
        self.stds = params_dic['stds']
        self.gaussians = params_dic['gaussians']

        self.loaded = True
Exemple #4
0
    def load_model(self):
        params_path = os.path.join(self.model_path, "model_params.pkl")

        params_dic = load_object(params_path)
        self.freqs = params_dic['freqs']
        self.means = params_dic['means']
        self.stds = params_dic['stds']
        self.gaussians = params_dic['gaussians']

        self.loaded = True
Exemple #5
0
    def load_model(self):
        if use_whitening:
            self.whiten_path = os.path.join(self.model_path, "zca_scaler.pkl")
        self.scaler = load_object(
            os.path.join(self.model_path, 'train_scaler.pkl'))

        deep_model_input_shape = (block_shape[0], block_shape[1], 1)
        self.build_model(deep_model_input_shape, opt, loss_fn)
        self.load_weights()

        self.loaded = True
Exemple #6
0
def predict_by_ae(data_iq, sample_rate, model_weights_dir):
    gpus = conf['gpus']
    train_params = conf['learning']['ae']
    batch_size = conf['learning']['ae']['batch_size']
    rbw_set = conf['preprocessing']['ae']['rbw_set']

    found_anomaly_per_rbw = []
    for rbw in rbw_set:
        print('loading data and geting spectrogram...')
        freqs, time, data_spectro = compute_fft_test_data(
            data_iq, sample_rate, rbw, model_weights_dir)

        print('spliting to block and predicting AutoEncoders errors...')
        block_shape = load_object(
            os.path.join(model_weights_dir, 'block_shape.pkl'))
        block_indices, data_blocks = reshape_to_blocks(data_spectro,
                                                       block_shape)
        conv_model = AeDeepModel(train_params, model_weights_dir, gpus)
        conv_model.build_model(data_blocks.shape[1:])
        conv_model.load_weights()
        data_ae_errors = predict_ae_error_vectors(data_blocks, data_blocks,
                                                  conv_model, batch_size)
        data_ae_errors = np.reshape(
            data_ae_errors, (block_indices.shape[0], block_indices.shape[1]))

        print('declaring anomaly block...')
        error_median, error_std = load_val_stat(model_weights_dir)
        anomalies_indices = detect_reconstruction_anomalies_median(
            data_ae_errors, error_median, error_std)

        print('voting between blocks...')
        has_anomaly = voting_anomalies(anomalies_indices, block_indices, time,
                                       freqs)

        found_anomaly_per_rbw.append(has_anomaly)
    print('finished!')

    return any(found_anomaly_per_rbw)
Exemple #7
0
def save_roc_plot(iq_normal,
                  sample_rate,
                  dBs,
                  num_ROC_samples=500,
                  score_method=None,
                  score_name='normal'):
    fprs, tprs, aucs = [], [], []

    normal_plot_saved = 0
    for ind, dB in enumerate(dBs):
        gc.collect()
        print('creating anomaly with {}dB...'.format(dB))
        sweep_params['dB'] = dB
        basic_len = get_basic_block_len(sample_rate)

        roc_start_indices_path = os.path.join(model_root,
                                              'roc_start_indices.pkl')

        num_samples = num_ROC_samples

        if os.path.isfile(roc_start_indices_path):
            a_starts, c_starts = load_object(roc_start_indices_path)
            if len(a_starts) != num_samples:
                print(
                    'wrong length of roc_start_indices.pkl...\nchanging to roc_start_indices.pkl len'
                )
                num_samples = len(a_starts)
        else:
            a_starts = np.random.randint(0, iq_normal.shape[0] - basic_len,
                                         (num_samples, ))
            c_starts = np.random.randint(0, iq_normal.shape[0] - basic_len,
                                         (num_samples, ))
            persist_object([a_starts, c_starts], roc_start_indices_path)

        tot_starts = np.concatenate([a_starts, c_starts])
        y_true = np.concatenate(
            [np.ones((num_samples, )),
             np.zeros((num_samples, ))]).astype(bool)
        y_score = np.zeros((2 * num_samples, ))

        for i in range(2 * num_samples):
            if y_true[i]:
                basic_iq = trim_iq_basic_block(iq_normal,
                                               sample_rate,
                                               start=tot_starts[i])
                basic_iq = CW(basic_iq, sample_rate, anomal_freq, dB)
                if i < 2:
                    model.plot_prediction(basic_iq, sample_rate)
                    f = plt.gcf()
                    f.suptitle('using model "' + model.name +
                               '" on sweep with ISR: ' + str(dB) + 'dB')
                    f.set_size_inches(12, 8, forward=True)
                    fig_path = os.path.join(
                        plots_path,
                        '{0:02d}_ISR_dB_{1}_sample_{2}'.format(ind, dB, i))
                    save_fig(f, fig_path)
                    plt.close()
            else:
                basic_iq = trim_iq_basic_block(iq_normal,
                                               sample_rate,
                                               start=tot_starts[i])
                if normal_plot_saved < 2:
                    model.plot_prediction(basic_iq, sample_rate)
                    f = plt.gcf()
                    f.suptitle('using model "' + model.name +
                               '" on normal data')
                    f.set_size_inches(12, 8, forward=True)
                    fig_path = os.path.join(
                        plots_path,
                        'normal_sample_{0}'.format(normal_plot_saved))
                    save_fig(f, fig_path)
                    plt.close()
                    normal_plot_saved += 1

            if score_method:
                y_score[i] = score_method(basic_iq, sample_rate)
            else:
                y_score[i] = model.predict_basic_block_score(
                    basic_iq, sample_rate)

        fpr, tpr, thresholds = roc_curve(y_true, y_score)
        fprs.append(fpr)
        tprs.append(tpr)
        aucs.append(roc_auc_score(y_true, y_score))

    # ploting
    f = plt.figure(0)
    for j in range(len(dBs) - 1, -1, -1):
        plt.plot(fprs[j], tprs[j])

    plt.legend([
        'anomaly in {}dB, auc: {:.3f}'.format(dBs[j], aucs[j])
        for j in range(len(dBs) - 1, -1, -1)
    ])
    plt.xlabel('False Positive Rate', fontsize=18)
    plt.ylabel('True Positive Rate', fontsize=18)
    plt.title('ROC for anomalies with different ISR [dB]', fontsize=20)
    plt.gca().grid(True)
    f.set_size_inches(8, 6.5, forward=True)

    fig_path = os.path.join(plots_path, 'All_ROCs_' + score_name)
    save_fig(f, fig_path)
    plt.close()

    persist_object(
        {
            'dBs': dBs,
            'aucs': aucs,
            'name': model.name + '_score_' + score_name
        }, os.path.join(plots_path, 'roc_score_' + score_name + '.pkl'))

    f = plt.figure(1)
    plt.plot(dBs, aucs, '-o')
    plt.ylim([0, 1])
    plt.xlabel('ISR in dB of anomaly', fontsize=18)
    plt.ylabel('AUC score', fontsize=18)
    plt.title(
        'Sweep anomaly\nArea Under Curve as function of\nInterference Signal Ratio',
        fontsize=20)
    plt.gca().grid(True)
    f.set_size_inches(8, 6.5, forward=True)
    fig_path = os.path.join(plots_path, 'dB_vs_AUC_' + score_name)

    save_fig(f, fig_path)
    plt.close()
Exemple #8
0
    test_data = series_to_supervised(test_data, n_in=seq_input_length, n_out=seq_output_length)
    # # Trim the data to fit the sequence length (SEQ_LENGTH)
    test_data = trim_by_seq_length(test_data, seq_input_length)
    (X_test, Y_test) = get_X_and_Y_columns(test_data)

    X_test = reshape_to_seq(X_test, seq_input_length)
    Y_test = reshape_to_seq(Y_test, seq_output_length)
    # Pad input/output sequences
    if use_padding:
        X_test = pad_sequences(X_test, maxlen=seq_pad_length, dtype='float32', padding=input_padding)
    inp_shape = X_test.shape

    model_obj.load_weights()
    test_errors = predict_rnn_error_vectors(X_test, Y_test, model_obj,batch_size)

    scaled_train_errors = load_object(train_errors_path)
    scaled_test_errors = scale_test_vectors(test_errors, error_scaler_path)

    gmm = load_object(gmm_save_path)

    test_scores = (gmm.score_samples(scaled_test_errors))
    try:
        train_scores = load_object(train_scores_path)
    except:
        raise Exception('No train scores are found, please train to obtain them')

    # ## Anomaly detection phase - EMD

    # Dataset-wise
    # for now, just return the EMD between the train and test scores
    emd_dists=compute_emd_distributions(train_scores,test_scores)