def setup_simulator():
    # Connect to V-REP
    print('\nConnecting to V-REP...')
    clientID = vu.connect_to_vrep()
    print('Connected.')

    # Reset simulation in case something was running
    vu.reset_sim(clientID)

    # Initialize control inputs
    vu.set_arm_joint_target_velocities(clientID, np.zeros(vu.N_ARM_JOINTS))
    vu.set_arm_joint_forces(clientID, 50. * np.ones(vu.N_ARM_JOINTS))
    vu.step_sim(clientID, 1)

    return clientID
 def connect(self, scene_file, port):
     client_id = vu.connect_to_vrep(port=port)
     res = vu.load_scene(client_id, scene_file)
     return client_id
Exemple #3
0
import numpy as np

from utilities import vrep_utils as vu

from lib import vrep

vrep.simxFinish(-1)  # just in case, close all opened connections

client_id = vu.connect_to_vrep()
print(client_id)

res = vu.load_scene(client_id,
                    '/home/mohit/projects/cooking/code/sim_vrep/scene_0.ttt')
print(res)
if res != vrep.simx_return_ok:
    print("Error in loading scene: {}".format(res))

vu.start_sim(client_id)

cam_rgb_names = ["Camera"]
cam_rgb_handles = [
    vrep.simxGetObjectHandle(client_id, n, vrep.simx_opmode_blocking)[1]
    for n in cam_rgb_names
]
print("Camera handle: {}".format(cam_rgb_handles))

octree_handle = vu.get_handle_by_name(client_id, 'Octree')
print('Octree handle: {}'.format(octree_handle))

voxel_list = []
for t in range(100):
Exemple #4
0
def main():

    dimensions = np.load('dimensions.npy')
    joint_to_center = np.load('joint_to_center_offset.npy')

    #obstacle_dimensions = np.load('obstacle_dimensions.npy')
    #obstacle_orientations = np.load('obstacle_orientations.npy')
    #obstacle_origins = np.load('obstacle_origins.npy')

    obstacle_dimensions = np.array((0.072, 0.098, 0.198))
    obstacle_orientations = np.array((0, 0, 0))
    obstacle_origins = np.array((0.2, 0.2, 0.09))

    #Instantiate cuboid object for obstacle cuboids from CollisionDetection
    obstacle = []
    for i in range(6):
        obstacle.append(
            CollisionDetection.Cuboid(obstacle_origins[i],
                                      obstacle_orientations[i],
                                      obstacle_dimensions[i]))

    no_vertices = 50  #No. of vertices to add to graph during training phase
    n = 0
    vertices = []
    deg_to_rad = np.pi / 180.

    while (n < no_vertices):
        pi = np.pi

        joint_targets = [
            np.random.uniform(low=-pi / 2,
                              high=pi / 2),  #random sampling joint angles
            np.random.uniform(low=-pi / 2, high=pi / 2),
            np.random.uniform(low=-pi / 2, high=pi / 2),
            np.random.uniform(low=-pi / 2, high=pi / 2),
            np.random.uniform(low=-pi / 2, high=pi / 2),
            -0.03,
            0.03
        ]

        collision = vertice_collision_checker(joint_targets, obstacle,
                                              joint_to_center, dimensions)
        #add vertices if no collision
        if collision == False:
            vertices.append(joint_targets)
            n += 1

    start = [-80 * deg_to_rad, 0, 0, 0, 0, -0.03, 0.03]
    goal = [
        0, 60 * deg_to_rad, -75 * deg_to_rad, -75 * deg_to_rad, 0, -0.03, 0.03
    ]
    #start = [0,0,0,0,0,-0.03,0.03]
    #goal = [pi/2,0,0,0,0,-0.03,0.03]
    vertices.append(start)
    vertices.append(goal)

    vertices = np.array(vertices)

    #Find edges that are not in collision
    k = 5  #No. of Nearest Neighbours
    p = 10  #No. of points sampled between the edges
    edges = []

    for i in range(vertices.shape[0]):
        dist = np.linalg.norm(
            vertices[i] - vertices,
            axis=1)  #euclidean distance between one and all vertices
        sorted_dist = np.argsort(dist)

        #To find the k-NN and if the path between is not in collision add the edge
        for j in range(k):
            idx = sorted_dist[j + 1]
            edge_start = vertices[i]
            edge_end = vertices[idx]
            sample_points = np.linspace(edge_start, edge_end, num=p)

            for p in range(
                    sample_points.shape[0]
            ):  #check if each path is in collision with obstacles
                collision = vertice_collision_checker(sample_points[p],
                                                      obstacle,
                                                      joint_to_center,
                                                      dimensions)
                if collision == True:
                    break

            if collision == False:
                edges.extend((edge_start, edge_end))

    edges = np.array(edges)

    graph = defaultdict(list)

    start = np.array(start)
    goal = np.array(goal)

    for i in range(0, edges.shape[0], 2):
        j = i + 1
        x = np.argwhere([np.all((edges[i] - vertices) == 0, axis=1)])[0][1]
        y = np.argwhere([np.all((edges[j] - vertices) == 0, axis=1)])[0][1]
        graph[x].append(y)

    planner_positions = BFS(graph, vertices, start, goal)

    print("Path found:\n")
    print(planner_positions)

    print('Connecting to V-REP...')
    clientID = vu.connect_to_vrep()
    print('Connected.')

    # Reset simulation in case something was running
    vu.reset_sim(clientID)

    # Initial control inputs are zero
    vu.set_arm_joint_target_velocities(clientID, np.zeros(vu.N_ARM_JOINTS))

    # Despite the name, this sets the maximum allowable joint force
    vu.set_arm_joint_forces(clientID, 50. * np.ones(vu.N_ARM_JOINTS))

    # One step to process the above settings
    vu.step_sim(clientID)

    controller = locobot_joint_ctrl.ArmController()
    i = 0

    for target in planner_positions:

        # Set new target position
        controller.set_target_joint_positions(target)

        steady_state_reached = False
        while not steady_state_reached:

            timestamp = vu.get_sim_time_seconds(clientID)
            #print('Simulation time: {} sec'.format(timestamp))

            # Get current joint positions
            sensed_joint_positions = vu.get_arm_joint_positions(clientID)

            # Calculate commands
            commands = controller.calculate_commands_from_feedback(
                timestamp, sensed_joint_positions)

            # Send commands to V-REP
            vu.set_arm_joint_target_velocities(clientID, commands)

            # Print current joint positions (comment out if you'd like)
            #print(sensed_joint_positions)
            vu.step_sim(clientID, 1)

            # Determine if we've met the condition to move on to the next point
            steady_state_reached = controller.has_stably_converged_to_target()

        i += 1
        print(i)

    vu.stop_sim(clientID)