Exemple #1
0
    def group_list_setup( self ):
        utilities.get_directory( DATA_PATH )

        if not os.path.exists( GROUPS_LOCATION ):
            project_data = {'diffuse': '_d',
                            'specular': '_s',
                            'normal': '_n',
                            'bump': '_b',
                            'occlusion': '_o',
                            'luminous': '_l'}

            utilities.write_json_file( GROUPS_LOCATION, project_data )
Exemple #2
0
def change_image_format_transform(path_to_file,
                                  new_format,
                                  updated_page_name="cmprs_img_index.html"):
    root_directory = os.getcwd()
    directory_to_write_in = get_directory(path_to_file)
    html_string = ""
    with open(path_to_file, "rb") as f:
        os.chdir(directory_to_write_in)
        soup = BeautifulSoup(f.read(), "html.parser")
        for tag in soup.findAll("img"):

            tag["src"] = change_image_format(tag["src"], new_format)

        os.chdir(root_directory)
        html_string = str(soup)
    with open("{}{}".format(directory_to_write_in, updated_page_name),
              "wb") as fw:
        fw.write(html_string)
Exemple #3
0
def compress_image_by_rid_transform(path_to_file,
                                    compression_rate,
                                    rid,
                                    updated_page_name="cmprs_img_index.html"):
    root_directory = os.getcwd()
    directory_to_write_in = get_directory(path_to_file)
    html_string = ""
    with open(path_to_file, "rb") as f:
        os.chdir(directory_to_write_in)
        soup = BeautifulSoup(f.read(), "html.parser")
        tag = soup.find(['img'], r_id=rid)
        if tag:
            tag["src"] = compress_image_by_percentage(tag["src"],
                                                      compression_rate)
        os.chdir(root_directory)
        html_string = str(soup)

    with open("{}{}".format(directory_to_write_in, updated_page_name),
              "wb") as fw:
        fw.write(html_string)
def page_stats(path_to_page, path_to_json_file):
    directory_to_write_in = get_directory(path_to_page)
    data_list = {
        "script": {
            "count": 0,
            "all": []
        },
        "video": {
            "count": 0,
            "all": []
        },
        "img": {
            "count": 0,
            "all": []
        },
        "total_size": 0
    }  # this list handles all the entries
    soup = None
    with open(path_to_page, "rb") as f:
        soup = BeautifulSoup(f.read(), "html.parser")
    for key in data_list.keys():
        tags = soup.find_all(key)
        for tag in tags:
            try:
                data_list[key]["count"] += 1
                data_list[key]["all"].append(
                    anotate_tag(tag, key, directory_to_write_in))
                #print "tag found"
            except KeyError:
                print "tag not labeled"
    for a in data_list["img"]["all"]:
        data_list["total_size"] += a["mem_footprint"]
    print len(data_list["img"]["all"])

    with open("{}".format(path_to_json_file), "wb") as fw:
        fw.write(json.dumps(data_list))
    return data_list["total_size"]
Exemple #5
0
print("Min : {}".format(np.min(np.reshape(DATA, [-1]))))
print("IQR : {}".format(IQR(np.reshape(DATA, [-1]))))

np.random.shuffle(DATA)

#run the fit
C, Q, F, P, LOUT = TRAIN.fit_general_MGSM(DATA,
                                          segmentation,
                                          EMreps=args["em_steps"],
                                          batchsize=args["minibatch_size"],
                                          lr=args["learning_rate"],
                                          ngradstep=args["n_grad_steps"],
                                          buff=args["stochastic_buffer"],
                                          fq_shared=args["fq_shared"],
                                          f_ID=args["f_ID"])

#once it is complete, make the directory and save the data
direc = utils.get_directory(direc="./model_files/", tag="model_file")

np.savetxt(direc + "/fac.csv", fac)
np.savetxt(direc + "/train_log.csv", LOUT)
utils.save_dict(direc + "/parameters", args)
utils.dump_file(direc + "/paths.pkl", paths)
utils.dump_file(direc + "/segs.pkl", segmentation)
utils.dump_file(direc + "/kernels.pkl", kernels)

utils.dump_file(direc + "/C.pkl", C)
utils.dump_file(direc + "/Q.pkl", Q)
utils.dump_file(direc + "/F.pkl", F)
utils.dump_file(direc + "/P.pkl", P)
Exemple #6
0
def train_network(args):

    ##setup
    batch_size = args["batchsize"]
    np.random.seed(args["seed"])
    tf.set_random_seed(args["seed"])

    dataset = args["dataset"]

    tag = args["tag"]

    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args["device"])

    direc = util.get_directory(direc="./outputs/", tag=tag)

    util.save_dict(direc + "/training_params.csv", args)
    #######

    ##get data
    data = get_data.get_data(dataset, "train")
    data = [tf.expand_dims(data[0], -1), data[1]]

    tr_lab, tr_dat = tf.train.shuffle_batch(data,
                                            batch_size,
                                            capacity=30,
                                            min_after_dequeue=10,
                                            seed=0)

    tedata = get_data.get_data(dataset, "test")
    tedata = [tf.expand_dims(tedata[0], -1), tedata[1]]

    te_lab, te_dat = tf.train.shuffle_batch(tedata,
                                            batch_size,
                                            capacity=30,
                                            min_after_dequeue=10,
                                            seed=0)
    ##########

    ##Build Network
    input_tensor = tf.placeholder(tf.float32, tr_dat.shape)

    enc, prob, pred, syst, off, init_prob = net.build_network(
        input_tensor,
        args["nenc"],
        args["nstate"],
        True,
        syspicktype=args["syspick"])
    ###############

    ##Losses
    lik = losses.likelihood_loss(enc, pred, prob)
    rms = losses.rms_loss(enc, pred, prob)
    mine = losses.MINE_loss(enc, prob)

    pre_ent = losses.sys_prior_ent_loss(prob)
    post_ent = losses.sys_posterior_ent_loss(prob)

    emean = tf.reduce_mean(enc, axis=[0, 1], keepdims=True)
    varreg = tf.maximum((1. / (.001 + tf.reduce_mean((enc - emean)**2))) - 1.,
                        0)

    meanediff = tf.reduce_mean((enc[:, :-1] - enc[:, 1:])**2)
    prederr = tf.reduce_mean(
        tf.expand_dims(prob[:, :-1], -1) *
        (tf.expand_dims(enc[:, 1:], 2) - pred[:, :-1])**2)

    scalereg = tf.reduce_mean(tf.reduce_sum(enc**2, 2))

    loss = lik

    adamopt = tf.train.AdamOptimizer(learning_rate=.001)

    fulltrain = adamopt.minimize(loss)

    init = tf.global_variables_initializer()
    coord = tf.train.Coordinator()

    sess = tf.Session()
    sess.run(init)
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    test = [sess.run([te_dat, te_lab]) for k in range(3)]

    LOG = log.log(direc + "/logfile.log", name="epoch,prederr,prior_entropy")
    dat, lab = sess.run([tr_dat, tr_lab])

    for k in range(args["epochs"]):
        dat, lab = sess.run([tr_dat, tr_lab])
        tr, pe = sess.run([fulltrain, pre_ent], {input_tensor: dat})

        if k % 50 == 0:
            rms_error = 0

            for t in range(len(test)):
                dat, lab = test[t]

                r = sess.run(prederr, {input_tensor: dat})
                rms_error += r

            rms_error /= len(test)

            LOG.log("{}\t{}\t{}".format(k, rms_error, pe))

    ###make test data
    lab = []
    dat = []
    e = []
    p = []
    pr = []

    NN = args["ntestbatch"]

    for k in range(NN):
        d, l = sess.run([tr_dat, tr_lab])

        en, pp, ppr = sess.run([enc, prob, pred], {input_tensor: d})

        lab.append(d)
        dat.append(l)
        e.append(en)
        p.append(pp)
        pr.append(ppr)

    lab = np.concatenate(lab)
    dat = np.concatenate(dat)
    e = np.concatenate(e)
    p = np.concatenate(p)
    pr = np.concatenate(pr)

    sys, O = sess.run([syst, off])

    sysdense = sess.run(trainable("syspick"))

    for s in range(len(sysdense)):
        np.savetxt(direc + "/nascar_syspick_{}.csv".format(s), sysdense[s])

    np.savetxt(direc + "/nascar_lab.csv", np.reshape(lab,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_dat.csv", np.reshape(dat,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_enc.csv", np.reshape(e, [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_pro.csv", np.reshape(p, [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_pre.csv", np.reshape(pr,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_sys.csv", np.reshape(sys, [len(sys), -1]))
    np.savetxt(direc + "/nascar_O.csv", O)

    coord.request_stop()
    coord.join(threads, stop_grace_period_secs=5)

    sess.close()
Exemple #7
0
def run(patch_size, n_batch, pca_frac, overcomplete, learning_rate,
        final_learning_rate, n_grad_step, loss_type, n_gauss_dim, n_lat_samp,
        seed, param_save_freq, log_freq, sigma, s1, s2, S, device,
        PCA_truncation, dataset):

    os.environ["CUDA_VISIBLE_DEVICES"] = str(device)
    np.random.seed(seed)

    dirname = util.get_directory(direc="./model_output/",
                                 tag=loss_type + "_{}".format(n_gauss_dim))

    params = {
        "dataset": dataset,
        "patch_size": patch_size,
        "n_batch": n_batch,
        "pca_frac": pca_frac,
        "overcomplete": overcomplete,
        "learning_rate": np.float32(learning_rate),
        "final_learning_rate": np.float32(final_learning_rate),
        "pca_truncation": PCA_truncation,
        "n_grad_step": n_grad_step,
        "loss_type": loss_type,
        "n_gauss_dim": n_gauss_dim,
        "n_lat_samp": n_lat_samp,
        "sigma": np.float32(sigma),
        "param_save_freq": param_save_freq,
        "log_freq": log_freq,
        "s1": np.float32(s1),
        "s2": np.float32(s2),
        "S": np.float32(S)
    }

    util.dump_file(dirname + "/model_params", params)

    LOG = log.log(dirname + "/logfile.csv")

    netpar = prepare_network(params)

    var = netpar["variance"]
    loss_exp = netpar["loss_exp"]
    recon_err = netpar["recon_err"]
    images = netpar["images"]
    data = netpar["data"]
    varif = netpar["vardat"]

    #get factor to multiply LR by:
    if final_learning_rate < learning_rate:
        LR_factor = np.float32(
            np.exp(-np.log(learning_rate / final_learning_rate) / n_grad_step))
    else:
        print(
            "Final LR must be lower than initial LR! Overriding with LR_factor = 1"
        )
        LR_factor = np.float32(1)

    LR = tf.Variable(np.float32(learning_rate), trainable=False)  #
    adam = tf.train.AdamOptimizer(
        learning_rate=LR)  # Set up the Adam optimization
    train = adam.minimize(loss_exp)  # Run training
    update_LR = tf.assign(LR, LR * LR_factor)
    run_training_loop(data, varif, images, netpar["mean"], n_batch, train,
                      loss_exp, recon_err, LOG, dirname, log_freq, n_grad_step,
                      param_save_freq, update_LR)
def page_prettify(path_to_page, updated_page_name="pretty_index.html"):
    directory_to_write_in = get_directory(path_to_page)
    path_to_output = "{}{}".format(directory_to_write_in, updated_page_name)
    prettify_html(path_to_page, path_to_output)
Exemple #9
0
def train_network(args):

    ##setup
    batch_size = args["batchsize"]
    np.random.seed(args["seed"])
    tf.set_random_seed(args["seed"])

    dataset = args["dataset"]

    tag = args["tag"]

    train_mode = args["train_mode"]

    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args["device"])

    direc = util.get_directory(direc="./outputs/", tag=tag)

    util.save_dict(direc + "/training_params", args)
    #######

    ##get data
    data = get_data.get_data(dataset, "train")
    data = [tf.expand_dims(data[0], -1), data[1]]

    tr_dat, tr_lab = tf.train.shuffle_batch(data,
                                            batch_size,
                                            capacity=30,
                                            min_after_dequeue=10,
                                            seed=0)

    tedata = get_data.get_data(dataset, "test")
    tedata = [tf.expand_dims(tedata[0], -1), tedata[1]]

    te_dat, te_lab = tf.train.shuffle_batch(tedata,
                                            batch_size,
                                            capacity=30,
                                            min_after_dequeue=10,
                                            seed=0)
    ##########

    ##Build Network
    input_tensor = tf.placeholder(tf.float32, tr_dat.shape)

    enc, prob, pred, syst, off, init_prob = net.build_network(
        input_tensor,
        args["nenc"],
        args["nstate"],
        False,
        syspicktype=args["syspick"])
    ###############

    ##Losses
    rms = losses.likelihood_loss(enc, pred, prob)
    mine = losses.MINE_loss(enc, prob)

    minevar = trainable(scope="MINE")
    minereg = tf.reduce_max([tf.reduce_max(k**2) for k in minevar])

    othervar = trainable(scope="enc")
    otherreg = tf.reduce_max([tf.reduce_max(k**2) for k in othervar])

    pre_ent = losses.sys_prior_ent_loss(prob)
    post_ent = losses.sys_posterior_ent_loss(prob)

    emean = tf.reduce_mean(enc, axis=[0, 1], keepdims=True)
    varreg = tf.maximum((1. / (.001 + tf.reduce_mean((enc - emean)**2))) - .5,
                        0)

    meanediff = tf.reduce_mean((enc[:, :-1] - enc[:, 1:])**2)
    prederr = tf.reduce_mean(
        tf.expand_dims(prob[:, :-1], -1) *
        (tf.expand_dims(enc[:, 1:], 2) - pred[:, :-1])**2)

    pererr = tf.reduce_mean(
        tf.expand_dims(prob[:, :-1], -1) *
        ((tf.expand_dims(enc[:, 1:], 2) - pred[:, :-1])**2)) / tf.reduce_mean(
            tf.expand_dims((enc[:, :-1] - enc[:, 1:]), 2)**2)

    scalereg = tf.reduce_mean(tf.reduce_sum(enc**2, 2))

    loss = args["likloss"] * rms
    reg = args["regloss"] * (mine + scalereg + varreg + minereg + otherreg)

    reg += args["ent_loss"] * post_ent

    minegradreg = losses.MINE_grad_regularization(enc)

    reg += args["MINE_grad_reg"] * minegradreg

    ########

    adamopt = tf.train.AdamOptimizer(learning_rate=.0001)

    fulltrain = adamopt.minimize(loss + reg)

    minetrain = adamopt.minimize(reg,
                                 var_list=trainable("MINE") + trainable("enc"))
    systtrain = adamopt.minimize(loss, var_list=trainable("sys"))

    ########

    init = tf.global_variables_initializer()
    coord = tf.train.Coordinator()

    sess = tf.Session()

    sess.run(init)

    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    ########TRAINING

    test = [sess.run([te_dat, te_lab]) for k in range(3)]

    LOG = log.log(["epoch", "percenterr", "prior_entropy", "encmean", "mine"],
                  PRINT=True)

    dat, lab = sess.run([tr_dat, tr_lab])

    for k in range(args["epochs"]):
        dat, lab = sess.run([tr_dat, tr_lab])  #get data batch

        if train_mode == "full":
            tr, pe = sess.run([fulltrain, pre_ent], {input_tensor: dat})
        elif train_mode == "minefirst":
            if k < args["epochs"] / 2:
                tr, pe = sess.run([minetrain, pre_ent], {input_tensor: dat})
            else:
                tr, pe = sess.run([systtrain, pre_ent], {input_tensor: dat})
        elif train_mode == "mineonly":
            tr, pe = sess.run([minetrain, pre_ent], {input_tensor: dat})
        else:
            print("Training mode not recognized")
            exit()

        if k % 50 == 0:
            teloss = 0
            tmean = 0
            mineloss = 0
            per_error = 0

            for t in range(len(test)):
                dat, lab = test[t]

                l, e, m, r = sess.run([meanediff, enc, mine, pererr],
                                      {input_tensor: dat})
                teloss += l
                tmean += np.max(e**2)
                mineloss += m
                per_error += r

            teloss /= len(test)
            tmean /= len(test)
            mineloss /= len(test)
            per_error /= len(test)

            LOG.log([k, per_error, pe, tmean, mineloss])

    LOG.save(direc + "/logfile.json")
    ###make test data
    lab = []
    dat = []
    e = []
    p = []
    pr = []

    NN = args["ntestbatch"]

    for k in range(NN):
        d, l = sess.run([tr_dat, tr_lab])

        en, pp, ppr = sess.run([enc, prob, pred], {input_tensor: d})
        lab.append(l)
        dat.append(d)
        e.append(en)
        p.append(pp)
        pr.append(ppr)

    lab = np.concatenate(lab)
    dat = np.concatenate(dat)
    e = np.concatenate(e)
    p = np.concatenate(p)
    pr = np.concatenate(pr)

    sys, O = sess.run([syst, off])

    sysdense = sess.run(trainable("syspick_dense"))

    for s in range(len(sysdense)):
        np.savetxt(direc + "/nascar_syspick_{}.csv".format(s), sysdense[s])

    np.savetxt(direc + "/nascar_lab.csv", np.reshape(lab,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_dat.csv", np.reshape(dat,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_enc.csv", np.reshape(e, [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_pro.csv", np.reshape(p, [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_pre.csv", np.reshape(pr,
                                                     [batch_size * NN, -1]))
    np.savetxt(direc + "/nascar_sys.csv", np.reshape(sys, [len(sys), -1]))
    np.savetxt(direc + "/nascar_O.csv", O)

    coord.request_stop()
    coord.join(threads, stop_grace_period_secs=5)

    sess.close()