def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=15. --aa=0.01 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="output directory") parser.add_option("--ave2D", type="string", default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string", default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string", default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string", default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int", default=10, help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int", default=2, help="number of time to pad the original images") parser.add_option("--sym", type="string", default="c1", help="symmetry") parser.add_option( "--fl", type="float", default=0.0, help= "cutoff freqency in absolute frequency (0.0-0.5). (Default - no filtration)" ) parser.add_option( "--aa", type="float", default=0.0, help= "fall off of the filter. Put 0.01 if user has no clue about falloff (Default - no filtration)" ) parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option( "--decimate", type="float", default=1.0, help= "image decimate rate, a number larger (expand image) or less (shrink image) than 1. default is 1" ) parser.add_option( "--window", type="int", default=0, help= "reduce images to a small image size without changing pixel_size. Default value is zero." ) #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option( "--nvec", type="int", default=0, help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options, args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.symmetrize: if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if (number_of_proc > 1): ERROR( "Cannot use more than one CPU for symmetry prepration", "sx3dvariability", 1) except: pass except: pass if options.output_dir != "./" and not os.path.exists( options.output_dir): os.mkdir(options.output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger, BaseLogger_Files if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") instack = args[0] sym = options.sym.lower() if (sym == "c1"): ERROR("There is no need to symmetrize stack for C1 symmetry", "sx3dvariability", 1) line = "" for a in sys.argv: line += " " + a log_main.add(line) if (instack[:4] != "bdb:"): if output_dir == "./": stack = "bdb:data" else: stack = "bdb:" + options.output_dir + "/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py " + instack + " " + stack) else: stack = instack qt = EMUtil.get_all_attributes(stack, 'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None] * na for k in xrange(ks): #Qfile = "Q%1d"%k if options.output_dir != "./": Qfile = os.path.join(options.output_dir, "Q%1d" % k) else: Qfile = os.path.join(options.output_dir, "Q%1d" % k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:" + Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:" + Qfile) for i in xrange(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() if options.output_dir == "./": delete_bdb("bdb:sdata") else: delete_bdb("bdb:" + options.output_dir + "/" + "sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + options.output_dir + "/" + "sdata" print(sdata) junk = cmdexecute("e2bdb.py " + options.output_dir + " --makevstack=" + sdata + " --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry", sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print(("usage: " + usage)) print(("Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0: ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if options.output_dir != "./" and not os.path.exists( options.output_dir): os.mkdir(options.output_dir) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca from logger import Logger, BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("instack :" + stack) log_main.add("output_dir :" + options.output_dir) log_main.add("var3d :" + options.var3D) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" #print_begin_msg("sx3dvariability") msg = "sx3dvariability" log_main.add(msg) print(line, msg) msg = ("%-70s: %s\n" % ("Input stack", stack)) log_main.add(msg) print(line, msg) symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1": imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if (i != options.sym): ERROR( "The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR( "Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if ((nima / i) * i != nima): ERROR( "The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima / i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker = {} Tracker["total_stack"] = nima if options.decimate == 1.: if options.window != 0: nx = options.window ny = options.window else: if options.window == 0: nx = int(nx * options.decimate) ny = int(ny * options.decimate) else: nx = int(options.window * options.decimate) ny = nx Tracker["nx"] = nx Tracker["ny"] = ny Tracker["nz"] = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx / 2 - 2 if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n" % ("Number of projection", nima) log_main.add(msg) print(line, msg) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin, img_end): this_image.read_image(stack, index_of_particle) varList.append( image_decimate_window_xform_ctf(this_image, options.decimate, options.window, options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp) log_main.add(msg) print(line, msg) msg = "...... Finding neighboring projections\n" log_main.add(msg) print(line, msg) if options.VERBOSE: msg = "Number of images per group: %d" % img_per_grp log_main.add(msg) print(line, msg) msg = "Now grouping projections" log_main.add(msg) print(line, msg) proj_angles.sort() proj_angles_list = [0.0] * (nima * 4) if myid == main_node: for i in xrange(nima): proj_angles_list[i * 4] = proj_angles[i][1] proj_angles_list[i * 4 + 1] = proj_angles[i][2] proj_angles_list[i * 4 + 2] = proj_angles[i][3] proj_angles_list[i * 4 + 3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([ proj_angles_list[i * 4], proj_angles_list[i * 4 + 1], proj_angles_list[i * 4 + 2], int(proj_angles_list[i * 4 + 3]) ]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print("On node %2d, number of images needed to be read = %5d" % (myid, len(all_proj))) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time() - t2)) log_main.add(msg) print(msg) msg = ("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Grouping projections took: ", (time() - t2) / 60, "[min]") print("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("...... calculating the stack of 2D variances \n") log_main.add(msg) print(line, msg) if options.VERBOSE: print("Now calculating the stack of 2D variances") proj_params = [0.0] * (nima * 5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print("Begin to read images on processor %d" % (myid)) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [] for index_of_proj in xrange(len(all_proj)): #img = EMData() #img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf( get_im(stack, all_proj[index_of_proj]), options.decimate, options.window, options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print("Reading images on processor %d done, time = %.2f" % (myid, time() - ttt)) print("On processor %d, we got %d images" % (myid, len(imgdata))) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW( phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, phiM - phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(phiM - phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx / 2 - 2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2 * nx ny2 = 2 * ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_tanl( filt_ctf( fft( pad(grp_imgdata[k], nx2, ny2, 1, 0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa)), nx, ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2 * nx ny2 = 2 * ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft( pad(grp_imgdata[k], nx2, ny2, 1, 0.0)), grp_imgdata[k].get_attr("ctf"), binary=1)), nx, ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx, ny) for q in grp_imgdata: Util.add_img2(var, q) Util.mul_scalar(var, 1.0 / (len(grp_imgdata) - 1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print("%5.2f%% done on processor %d" % (i * 100.0 / len(proj_list), myid)) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image( os.path.join(options.output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol = fpol(ave, Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print("Reconstructing 3D average volume") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" ave3D = fpol(ave3D, Tracker["nx"], Tracker["nx"], Tracker["nx"]) ave3D.write_image( os.path.join(options.output_dir, options.ave3D)) msg = ("%-70s: %s\n" % ( "Writing to the disk volume reconstructed from averages as", options.ave3D)) log_main.add(msg) print(line, msg) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image( os.path.join(options.outpout_dir, "eig3d_%03d.hdf" % (k, ITER))) Util.mul_img(eig3D, model_circle(radiuspca, nx, nx, nx)) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj( eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" u = int(u[0]) msg = (" Eigenvector: ", k, " number changed ", int(icont[0])) log_main.add(msg) print(line, msg) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(varList)): tmpvol = fpol(varList[im], Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) tmpvol = fpol(ave, Tracker["nx"], Tracker["nx"], 1) tmpvol.write_image( os.path.join(options.output_dir, options.var2D, km)) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("Reconstructing 3D variability volume") log_main.add(msg) print(line, msg) t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res = fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(os.path.join(options.output_dir, options.var3D)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Reconstructing 3D variability took [s]", time() - t6)) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Reconstruction took: %.2f [min]" % ((time() - t6) / 60)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n" % ("Total time for these computations [s]", time() - t0)) print(line, msg) log_main.add(msg) if options.VERBOSE: print("Total time for these computations: %.2f [min]" % ((time() - t0) / 60)) line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("sx3dvariability") print(line, msg) log_main.add(msg) from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ", myid, " ", len( proj_list_all), time() - st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ", myid, " ", time() - st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method", "sxproj_stability", 1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in xrange(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ", myid, " ", time() - st proj_ang = [0.0] * (nima * 2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] print " C ", myid, " ", time() - st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi print " D ", myid, " ", time() - st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ", myid, " ", time() - st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ", myid, " ", time() - st from utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, range(img_begin, img_begin + 1)) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list print " D ", myid, " ", time() - st else: ERROR("Incorrect projection grouping option", "sxproj_stability", 1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in xrange(len(proj_list)): print " E ", myid, " ", time() - st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ", i, refprojdir[i] aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group",type="int" , default=100 , help="number of images per group" ) parser.add_option("--radius", type="int" , default=-1 , help="radius for alignment" ) parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--iter", type="int" , default=30, help="number of iterations within alignment (default = 30)" ) parser.add_option("--num_ali", type="int" , default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--thld_err", type="float" , default=1.0, help="threshold of pixel error (default = 1.732)" ) parser.add_option("--grouping" , type="string" , default="GRP", help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size") parser.add_option("--delta", type="float" , default=-1.0, help="angular step for reference projections (required for GEV method)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") (options,args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx/2-2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ",myid," ",len(proj_list_all),time()-st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima/img_per_grp-1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i%number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ",myid," ",time()-st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin: img_end] del refproj ref_ang = [0.0]*(len(refprojdir)*2) for i in xrange(len(refprojdir)): ref_ang[i*2] = refprojdir[0][0] ref_ang[i*2+1] = refprojdir[0][1]+i*0.1 print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ",myid," ",time()-st proj_ang = [0.0]*(nima*2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i*2] = dp["phi"] proj_ang[i*2+1] = dp["theta"] print " C ",myid," ",time()-st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp]) del asi print " D ",myid," ",time()-st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ",myid," ",time()-st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ",myid," ",time()-st from utilities import nearest_proj proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end)) refprojdir = proj_params[img_begin: img_end] del proj_params, mirror_list print " D ",myid," ",time()-st else: ERROR("Incorrect projection grouping option","sxproj_stability",1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx,ny)]*len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0,0.0,-1.0]]*len(proj_list) for i in xrange(len(proj_list)): print " E ",myid," ",time()-st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend( [alpha, sx, sy, mirror] ) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1) #print " H ",myid," ",time()-st if(len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj(class_data[j]) if( theta > 90.0): phi = (phi+540.0)%360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi*phi vtht += theta*theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l>1 : l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l*aphi*aphi)/l vtht = (vtht - l*atht*atht)/l from math import sqrt refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ",i, refprojdir[i] aveList[i].set_attr('members',[-1]) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string" , default="./", help="Output directory") parser.add_option("--ave2D", type="string" , default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="Compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option("--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int" , default=2 , help="Number of time to pad the original images.(Default is 2 times padding)") parser.add_option("--sym" , type="string" , default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option("--fl", type="float" , default=0.0, help="Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.02 , help="Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)") parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option("--decimate", type ="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option("--window", type ="int", default=0, help="Target image size relative to original image size. (Default value is zero.)") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type ="float", default=0.5, help="python overhead per CPU.") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.output_dir =="./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize : if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry preparation","sx3dvariability",1) except: pass except: pass if not os.path.exists(current_output_dir): os.mkdir(current_output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger,BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if( sym == "c1" ): ERROR("There is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) line ="" for a in sys.argv: line +=" "+a log_main.add(line) if(instack[:4] !="bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:"+current_output_dir+"/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d"%k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:"+Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:"+Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:"+Qfile) for i in range(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/"+"sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:"+current_output_dir+"/"+"sdata" print(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir +" --makevstack="+sdata +" --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry",sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from fundamentals import window2d sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split(MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead*number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: print(( "usage: " + usage)) print(( "Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) #if options.VAR and options.SND: # ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) #if options.nvec > 0 : # ERROR("PCA option not implemented", "sx3dvariability", 1, myid) #if options.nvec > 0 and options.ave3D == None: # ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", 1, myid) if current_decimate>1.0 or current_decimate<0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", "sx3dvariability", 1, myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", "sx3dvariability", 1, myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if(min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR("The target window size cannot be larger than the size of decimated image", "sx3dvariability", 1, myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.mkdir(current_output_dir)# Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from logger import Logger,BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line +=" "+a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s"%options.sym) log_main.add("Input stack : %s"%stack) log_main.add("Output_dir : %s"%current_output_dir) if options.ave3D: log_main.add("Ave3d : %s"%options.ave3D) if options.var3D: log_main.add("Var3d : %s"%options.var3D) if options.ave2D: log_main.add("Ave2D : %s"%options.ave2D) if options.var2D: log_main.add("Var2D : %s"%options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d"%options.img_per_grp) log_main.add("Image decimate rate : %4.3f"%current_decimate) log_main.add("Low pass filter : %4.3f"%options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add("Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"%round((current_fl*current_decimate),3)) log_main.add("Window size : %5d "%current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", 1, myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", 1, myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", 1, myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size", "sx3dvariability", 1) if current_decimate == 1.: if current_window !=0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx*current_decimate+0.5) ny = int(ny*current_decimate+0.5) else: nx = int(current_window*current_decimate+0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add("The target image size is not a product of small prime numbers") log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d."%current_window) else: if current_window == 0: nx = smallprime(int(nx*current_decimate+0.5)) current_decimate = float(nx)/nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f."%current_decimate) else: nx = smallprime(int(current_window*current_decimate+0.5)) ny = nx current_window = int(nx/current_decimate+0.5) if (myid == main_node): log_main.add("The window size is updated to %d."%current_window) if myid == main_node: log_main.add("The target image size is %d"%nx) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: log_main.add("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) from EMAN2 import Region for index_of_particle in range(img_begin,img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append(fdecimate(window2d(image,current_window,current_window), nx,ny)) else: varList.append(fdecimate(image, nx,ny)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set from utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add( "Number of images per group: %d"%img_per_grp) log_main.add( "Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) log_main.add("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]"%((time()-t2)/60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len(all_proj)# all neighborhood set for assigned to myid pnumber = len(proj_list)*2. + img_per_grp # aveList and varList tnumber = dnumber+pnumber vol_size2 = nx**3*4.*8/1.e9 vol_size1 = 2.*nnxo**3*4.*8/1.e9 proj_size = nnxo*nnyo*len(proj_list)*4.*2./1.e9 # both aveList and varList orig_data_size = nnxo*nnyo*4.*tnumber/1.e9 reduced_data_size = nx*nx*4.*tnumber/1.e9 full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy>-1)] = dummy[np.where(dummy>-1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add("Nx: current image size = %d. Decimated by %f from %d"%(nx, current_decimate, nnxo)) else: log_main.add("Nx: current image size = %d. Windowed to %d, and decimated by %f from %d"%(nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add("Img_per_grp: user defined image per group for averaging = %d"%img_per_grp) log_main.add("Overhead: total python overhead memory consumption = %f"%overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Begin reading and preprocessing images on processor. Wait... ") ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [ None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if( current_window > 0): imgdata[index_of_proj] = fdecimate(window2d(get_im(stack, all_proj[index_of_proj]),current_window,current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate(get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate> 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = ctf.apix/current_decimate imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj%100 == 0: log_main.add(" ...... %6.2f%% "%(index_of_proj/float(len(all_proj))*100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m"%((time()-ttt)/60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(nx/2-2, nx, nx) if options.CTF: from utilities import pad from filter import filt_ctf from filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner=nx//2-4 outer=inner+2 xform_proj_for_2D = [ None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"],dpar["theta"],dpar["psi"],-dpar["tx"]*current_decimate,-dpar["ty"]*current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW(cpar["phi"], cpar["theta"],cpar["psi"], -cpar["tx"]*current_decimate, -cpar["ty"]*current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM- cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr("xform.align2d", Transform({"type":"2D","alpha":alpha,"tx":sx,"ty":sy,"mirror":mirror,"scale":1.0})) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR = 1.0e5, interpolation_method = "linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i%100 == 0): log_main.add(" ......%6.2f%% "%(i/float(len(proj_list))*100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]"%((time()-ttt)/60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row(xform_proj_for_2D, os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(aveList)): aveList[im].write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1./current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image(os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]"%((time()-t5)/60.0)) log_main.add("%-70s: %s\n"%("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(varList)): tmpvol=fpol(varList[im], nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from applications import header header(os.path.join(current_output_dir, options.var2D), params = 'xform.projection',fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry = options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1./current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add("%-70s: %s\n"%("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]"%((time()-t6)/60.0)) log_main.add("Total computation time %f12.1 [m]"%((time()-t0)/60.0)) log_main.add("sx3dvariability finishes") from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False
def rec3D_MPI_noCTF(data, symmetry, mask3D, fsc_curve, myid, main_node = 0, rstep = 1.0, odd_start=0, eve_start=1, finfo=None, index = -1, npad = 4, hparams=None): ''' This function is to be called within an MPI program to do a reconstruction on a dataset kept in the memory Computes reconstruction and through odd-even, in order to get the resolution if index > -1, projections should have attribute group set and only those whose group matches index will be used in the reconstruction this is for multireference alignment ''' import os from statistics import fsc_mask from utilities import model_blank, reduce_EMData_to_root, get_image,send_EMData, recv_EMData from random import randint from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD nproc = mpi_comm_size(MPI_COMM_WORLD) if nproc==1: assert main_node==0 main_node_odd = main_node main_node_eve = main_node main_node_all = main_node elif nproc==2: main_node_odd = main_node main_node_eve = (main_node+1)%2 main_node_all = main_node tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 else: #spread CPUs between different nodes to save memory main_node_odd = main_node main_node_eve = (int(main_node)+nproc-1)%int(nproc) main_node_all = (int(main_node)+nproc//2)%int(nproc) tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 tag_fftvol_odd = 1003 tag_weight_odd = 1004 tag_volall = 1005 nx = data[0].get_xsize() fftvol_odd_file,weight_odd_file = prepare_recons(data, symmetry, myid, main_node_odd, odd_start, 2, index, finfo, npad) fftvol_eve_file,weight_eve_file = prepare_recons(data, symmetry, myid, main_node_eve, eve_start, 2, index, finfo, npad) if nproc == 1: fftvol = get_image( fftvol_odd_file ) weight = get_image( weight_odd_file ) volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) fftvol = get_image( fftvol_eve_file ) weight = get_image( weight_eve_file ) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) fftvol = get_image( fftvol_odd_file ) Util.add_img( fftvol, get_image(fftvol_eve_file) ) weight = get_image( weight_odd_file ) Util.add_img( weight, get_image(weight_eve_file) ) volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ); os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ); return volall,fscdat,volodd,voleve if nproc == 2: if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) weight = get_image( weight_odd_file ) volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) voleve = recv_EMData(main_node_eve, tag_voleve) else: assert myid == main_node_eve fftvol = get_image( fftvol_eve_file ) weight = get_image( weight_eve_file ) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) fftvol_tmp = recv_EMData( main_node_eve, tag_fftvol_eve ) Util.add_img( fftvol, fftvol_tmp ) fftvol_tmp = None weight = get_image( weight_odd_file ) weight_tmp = recv_EMData( main_node_eve, tag_weight_eve ) Util.add_img( weight, weight_tmp ) weight_tmp = None volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ); os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ); return volall,fscdat,volodd,voleve else: assert myid == main_node_eve fftvol = get_image( fftvol_eve_file ) send_EMData(fftvol, main_node_odd, tag_fftvol_eve ) weight = get_image( weight_eve_file ) send_EMData(weight, main_node_odd, tag_weight_eve ) import os os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ); return model_blank(nx,nx,nx), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) # cases from all other number of processors situations if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) send_EMData(fftvol, main_node_eve, tag_fftvol_odd ) if not(finfo is None): finfo.write("fftvol odd sent\n") finfo.flush() weight = get_image( weight_odd_file ) send_EMData(weight, main_node_all, tag_weight_odd ) if not(finfo is None): finfo.write("weight odd sent\n") finfo.flush() volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) del fftvol, weight voleve = recv_EMData(main_node_eve, tag_voleve) volall = recv_EMData(main_node_all, tag_volall) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ); return volall,fscdat,volodd,voleve if myid == main_node_eve: ftmp = recv_EMData(main_node_odd, tag_fftvol_odd) fftvol = get_image( fftvol_eve_file ) Util.add_img( ftmp, fftvol ) send_EMData(ftmp, main_node_all, tag_fftvol_eve ) del ftmp weight = get_image( weight_eve_file ) send_EMData(weight, main_node_all, tag_weight_eve ) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ); return model_blank(nx,nx,nx), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) if myid == main_node_all: fftvol = recv_EMData(main_node_eve, tag_fftvol_eve) if not(finfo is None): finfo.write( "fftvol odd received\n" ) finfo.flush() weight = recv_EMData(main_node_odd, tag_weight_odd) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) Util.add_img( weight, weight_tmp ) weight_tmp = None volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(volall, main_node_odd, tag_volall) return model_blank(nx,nx,nx),None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) return model_blank(nx,nx,nx), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx)
def rec3D_MPI(data, snr, symmetry, mask3D, fsc_curve, myid, main_node = 0, rstep = 1.0, odd_start=0, eve_start=1, finfo=None, index=-1, npad = 4, hparams=None): ''' This function is to be called within an MPI program to do a reconstruction on a dataset kept in the memory, computes reconstruction and through odd-even, in order to get the resolution ''' import os from statistics import fsc_mask from utilities import model_blank, reduce_EMData_to_root, get_image, send_EMData, recv_EMData from random import randint from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD nproc = mpi_comm_size(MPI_COMM_WORLD) if nproc==1: assert main_node==0 main_node_odd = main_node main_node_eve = main_node main_node_all = main_node elif nproc==2: main_node_odd = main_node main_node_eve = (main_node+1)%2 main_node_all = main_node tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 else: #spread CPUs between different nodes to save memory main_node_odd = main_node main_node_eve = (int(main_node)+nproc-1)%int(nproc) main_node_all = (int(main_node)+nproc//2)%int(nproc) tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 tag_fftvol_odd = 1003 tag_weight_odd = 1004 tag_volall = 1005 if index !=-1 : grpdata = [] for i in xrange( len(data) ): if data[i].get_attr( 'group' ) == index: grpdata.append( data[i] ) imgdata = grpdata else: imgdata = data nx = get_image_size( imgdata, myid ) if nx==0: ERROR("Warning: no images were given for reconstruction, this usually means there is an empty group, returning empty volume","rec3D",0) return model_blank( 2, 2, 2 ), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) fftvol_odd_file,weight_odd_file = prepare_recons_ctf(nx, imgdata, snr, symmetry, myid, main_node_odd, odd_start, 2, finfo, npad) fftvol_eve_file,weight_eve_file = prepare_recons_ctf(nx, imgdata, snr, symmetry, myid, main_node_eve, eve_start, 2, finfo, npad) del imgdata if nproc == 1: fftvol = get_image(fftvol_odd_file) weight = get_image(weight_odd_file) volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) fftvol = get_image(fftvol_eve_file) weight = get_image(weight_eve_file) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) fftvol = get_image( fftvol_odd_file ) fftvol_tmp = get_image(fftvol_eve_file) fftvol += fftvol_tmp fftvol_tmp = None weight = get_image( weight_odd_file ) weight_tmp = get_image(weight_eve_file) weight += weight_tmp weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ) os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ) return volall,fscdat,volodd,voleve if nproc == 2: if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) weight = get_image( weight_odd_file ) volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) else: assert myid == main_node_eve fftvol = get_image( fftvol_eve_file ) weight = get_image( weight_eve_file ) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) fftvol_tmp = recv_EMData( main_node_eve, tag_fftvol_eve ) fftvol += fftvol_tmp fftvol_tmp = None weight = get_image( weight_odd_file ) weight_tmp = recv_EMData( main_node_eve, tag_weight_eve ) weight += weight_tmp weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ) os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ) return volall,fscdat,volodd,voleve else: assert myid == main_node_eve fftvol = get_image( fftvol_eve_file ) send_EMData(fftvol, main_node_odd, tag_fftvol_eve ) weight = get_image( weight_eve_file ) send_EMData(weight, main_node_odd, tag_weight_eve ) os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ) return model_blank(nx,nx,nx), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) # cases from all other number of processors situations if myid == main_node_odd: fftvol = get_image( fftvol_odd_file ) send_EMData(fftvol, main_node_eve, tag_fftvol_odd ) if not(finfo is None): finfo.write("fftvol odd sent\n") finfo.flush() weight = get_image( weight_odd_file ) send_EMData(weight, main_node_all, tag_weight_odd ) if not(finfo is None): finfo.write("weight odd sent\n") finfo.flush() volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) del fftvol, weight voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) volall = recv_EMData(main_node_all, tag_volall) # if helical, find & apply symmetry to volume if hparams is not None: volodd,voleve,volall = hsymVols(volodd,voleve,volall,hparams) fscdat = fsc_mask( volodd, voleve, mask3D, rstep, fsc_curve) os.system( "rm -f " + fftvol_odd_file + " " + weight_odd_file ); return volall,fscdat,volodd,voleve if myid == main_node_eve: ftmp = recv_EMData(main_node_odd, tag_fftvol_odd) fftvol = get_image( fftvol_eve_file ) Util.add_img( ftmp, fftvol ) send_EMData(ftmp, main_node_all, tag_fftvol_eve ) del ftmp weight = get_image( weight_eve_file ) send_EMData(weight, main_node_all, tag_weight_eve ) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) os.system( "rm -f " + fftvol_eve_file + " " + weight_eve_file ); return model_blank(nx,nx,nx), None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) if myid == main_node_all: fftvol = recv_EMData(main_node_eve, tag_fftvol_eve) if not(finfo is None): finfo.write( "fftvol odd received\n" ) finfo.flush() weight = recv_EMData(main_node_odd, tag_weight_odd) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) Util.add_img( weight, weight_tmp ) weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(volall, main_node_odd, tag_volall) return model_blank(nx,nx,nx),None, model_blank(nx,nx,nx), model_blank(nx,nx,nx) return model_blank(nx,nx,nx),None, model_blank(nx,nx,nx), model_blank(nx,nx,nx)
def rec3D_MPI_noCTF(data, symmetry, mask3D, fsc_curve, myid, main_node=0, rstep=1.0, odd_start=0, eve_start=1, finfo=None, index=-1, npad=4): ''' This function is to be called within an MPI program to do a reconstruction on a dataset kept in the memory Computes reconstruction and through odd-even, in order to get the resolution if index > -1, projections should have attribute group set and only those whose group matches index will be used in the reconstruction this is for multireference alignment ''' import os from statistics import fsc_mask from utilities import model_blank, reduce_EMData_to_root, get_image, send_EMData, recv_EMData from random import randint from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from reconstruction import recons_from_fftvol, prepare_recons nproc = mpi_comm_size(MPI_COMM_WORLD) if nproc == 1: assert main_node == 0 main_node_odd = main_node main_node_eve = main_node main_node_all = main_node elif nproc == 2: main_node_odd = main_node main_node_eve = (main_node + 1) % 2 main_node_all = main_node tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 else: #spread CPUs between different nodes to save memory main_node_odd = main_node main_node_eve = (int(main_node) + nproc - 1) % int(nproc) main_node_all = (int(main_node) + nproc // 2) % int(nproc) tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 tag_fftvol_odd = 1003 tag_weight_odd = 1004 tag_volall = 1005 nx = data[0].get_xsize() fftvol_odd_file, weight_odd_file = prepare_recons(data, symmetry, myid, main_node_odd, odd_start, 2, index, finfo, npad) fftvol_eve_file, weight_eve_file = prepare_recons(data, symmetry, myid, main_node_eve, eve_start, 2, index, finfo, npad) if nproc == 1: fftvol = get_image(fftvol_odd_file) weight = get_image(weight_odd_file) volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) fftvol = get_image(fftvol_eve_file) weight = get_image(weight_eve_file) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) fftvol = get_image(fftvol_odd_file) Util.add_img(fftvol, get_image(fftvol_eve_file)) weight = get_image(weight_odd_file) Util.add_img(weight, get_image(weight_eve_file)) volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return volall, fscdat, volodd, voleve if nproc == 2: if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) weight = get_image(weight_odd_file) volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) else: assert myid == main_node_eve fftvol = get_image(fftvol_eve_file) weight = get_image(weight_eve_file) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) fftvol_tmp = recv_EMData(main_node_eve, tag_fftvol_eve) Util.add_img(fftvol, fftvol_tmp) fftvol_tmp = None weight = get_image(weight_odd_file) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) Util.add_img(weight, weight_tmp) weight_tmp = None volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) return volall, fscdat, volodd, voleve else: assert myid == main_node_eve fftvol = get_image(fftvol_eve_file) send_EMData(fftvol, main_node_odd, tag_fftvol_eve) weight = get_image(weight_eve_file) send_EMData(weight, main_node_odd, tag_weight_eve) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank( nx, nx, nx) # cases from all other number of processors situations if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) send_EMData(fftvol, main_node_eve, tag_fftvol_odd) if not (finfo is None): finfo.write("fftvol odd sent\n") finfo.flush() weight = get_image(weight_odd_file) send_EMData(weight, main_node_all, tag_weight_odd) if not (finfo is None): finfo.write("weight odd sent\n") finfo.flush() volodd = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) del fftvol, weight voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) volall = recv_EMData(main_node_all, tag_volall) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) return volall, fscdat, volodd, voleve if myid == main_node_eve: ftmp = recv_EMData(main_node_odd, tag_fftvol_odd) fftvol = get_image(fftvol_eve_file) Util.add_img(ftmp, fftvol) send_EMData(ftmp, main_node_all, tag_fftvol_eve) del ftmp weight = get_image(weight_eve_file) send_EMData(weight, main_node_all, tag_weight_eve) voleve = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx) if myid == main_node_all: fftvol = recv_EMData(main_node_eve, tag_fftvol_eve) if not (finfo is None): finfo.write("fftvol odd received\n") finfo.flush() weight = recv_EMData(main_node_odd, tag_weight_odd) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) Util.add_img(weight, weight_tmp) weight_tmp = None volall = recons_from_fftvol(nx, fftvol, weight, symmetry, npad) send_EMData(volall, main_node_odd, tag_volall) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx)
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=0.2 --aa=0.1 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--ave2D", type="string" , default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=10 , help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") parser.add_option("--radiusvar", type="int" , default=-1 , help="radius for 3D var" ) parser.add_option("--npad", type="int" , default=2 , help="number of time to pad the original images") parser.add_option("--sym" , type="string" , default="c1" , help="symmetry") parser.add_option("--fl", type="float" , default=0.0 , help="stop-band frequency (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.0 , help="fall off of the filter (Default - no filtration)") parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option("--decimate", type="float", default=1.0, help="image decimate rate, a number large than 1. default is 1") parser.add_option("--window", type="int", default=0, help="reduce images to a small image size without changing pixel_size. Default value is zero.") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option("--nvec", type="int" , default=0 , help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict if options.symmetrize : try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry prepration","sx3dvariability",1) except: pass except: pass # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" instack = args[0] sym = options.sym if( sym == "c1" ): ERROR("Thre is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) if(instack[:4] !="bdb:"): stack = "bdb:data" delete_bdb(stack) cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in xrange(ks): delete_bdb("bdb:Q%1d"%k) cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) DB = db_open_dict("bdb:Q%1d"%k) for i in xrange(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() delete_bdb("bdb:sdata") cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") #cmdexecute("ls EMAN2DB/sdata*") a = get_im("bdb:sdata") a.set_attr("variabilitysymmetry",sym) a.write_image("bdb:sdata") else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print( "usage: " + usage) print( "Please run '" + progname + " -h' for detailed options") return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0 : ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True if myid == main_node: print_begin_msg("sx3dvariability") print_msg("%-70s: %s\n"%("Input stack", stack)) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry") if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker ={} Tracker["nx"] =nx Tracker["ny"] =ny Tracker["total_stack"]=nima if options.decimate==1.: if options.window !=0: nx = options.window ny = options.window else: if options.window ==0: nx = int(nx/options.decimate) ny = int(ny/options.decimate) else: nx = int(options.window/options.decimate) ny = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: print_msg("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin,img_end): this_image.read_image(stack,index_of_particle) varList.append(image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() print_msg("%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) print_msg("...... Finding neighboring projections\n") if options.VERBOSE: print "Number of images per group: ", img_per_grp print "Now grouping projections" proj_angles.sort() proj_angles_list = [0.0]*(nima*4) if myid == main_node: for i in xrange(nima): proj_angles_list[i*4] = proj_angles[i][1] proj_angles_list[i*4+1] = proj_angles[i][2] proj_angles_list[i*4+2] = proj_angles[i][3] proj_angles_list[i*4+3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([proj_angles_list[i*4], proj_angles_list[i*4+1], proj_angles_list[i*4+2], int(proj_angles_list[i*4+3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print "On node %2d, number of images needed to be read = %5d"%(myid, len(all_proj)) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) print_msg("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) if options.VERBOSE: print "Grouping projections took: ", (time()-t2)/60 , "[min]" print "Number of groups on main node: ", len(proj_list) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("...... calculating the stack of 2D variances \n") if options.VERBOSE: print "Now calculating the stack of 2D variances" proj_params = [0.0]*(nima*5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print "Begin to read images on processor %d"%(myid) ttt = time() #imgdata = EMData.read_images(stack, all_proj) img = EMData() imgdata = [] for index_of_proj in xrange(len(all_proj)): img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print "Reading images on processor %d done, time = %.2f"%(myid, time()-ttt) print "On processor %d, we got %d images"%(myid, len(imgdata)) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM-phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM-phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM-phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM-phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx/2-2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d(fft( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa) ),nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl( grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1) ) , nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx,ny) for q in grp_imgdata: Util.add_img2( var, q ) Util.mul_scalar( var, 1.0/(len(grp_imgdata)-1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print "%5.2f%% done on processor %d"%(i*100.0/len(proj_list), myid) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(options.ave2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, Tracker["nx"],Tracker["nx"],Tracker["nx"]) tmpvol.write_image(options.ave2D, km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print "Reconstructing 3D average volume" ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: ave3D=fpol(ave3D,Tracker["nx"],Tracker["nx"],Tracker["nx"]) ave3D.write_image(options.ave3D) print_msg("%-70s: %s\n"%("Writing to the disk volume reconstructed from averages as", options.ave3D)) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print "Reconstruction eigenvolumes", k cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image("eig3d_%03d.hdf"%k, ITER) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) print " Eigenvector: ",k," number changed ",int(icont[0]) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(varList)): tmpvol=fpol(varList[im], Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: print "Reconstructing 3D variability volume" t6 = time() radiusvar = options.radiusvar if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res =fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(options.var3D) if myid == main_node: print_msg("%-70s: %.2f\n"%("Reconstructing 3D variability took [s]", time()-t6)) if options.VERBOSE: print "Reconstruction took: %.2f [min]"%((time()-t6)/60) if myid == main_node: print_msg("%-70s: %.2f\n"%("Total time for these computations [s]", time()-t0)) if options.VERBOSE: print "Total time for these computations: %.2f [min]"%((time()-t0)/60) print_end_msg("sx3dvariability") global_def.BATCH = False from mpi import mpi_finalize mpi_finalize()
def rec3D_MPI(data, snr, symmetry, mask3D, fsc_curve, myid, main_node=0, rstep=1.0, odd_start=0, eve_start=1, finfo=None, index=-1, npad=4, hparams=None): ''' This function is to be called within an MPI program to do a reconstruction on a dataset kept in the memory, computes reconstruction and through odd-even, in order to get the resolution ''' import os from statistics import fsc_mask from utilities import model_blank, reduce_EMData_to_root, get_image, send_EMData, recv_EMData from random import randint from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD nproc = mpi_comm_size(MPI_COMM_WORLD) if nproc == 1: assert main_node == 0 main_node_odd = main_node main_node_eve = main_node main_node_all = main_node elif nproc == 2: main_node_odd = main_node main_node_eve = (main_node + 1) % 2 main_node_all = main_node tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 else: #spread CPUs between different nodes to save memory main_node_odd = main_node main_node_eve = (int(main_node) + nproc - 1) % int(nproc) main_node_all = (int(main_node) + nproc // 2) % int(nproc) tag_voleve = 1000 tag_fftvol_eve = 1001 tag_weight_eve = 1002 tag_fftvol_odd = 1003 tag_weight_odd = 1004 tag_volall = 1005 if index != -1: grpdata = [] for i in xrange(len(data)): if data[i].get_attr('group') == index: grpdata.append(data[i]) imgdata = grpdata else: imgdata = data nx = get_image_size(imgdata, myid) if nx == 0: ERROR( "Warning: no images were given for reconstruction, this usually means there is an empty group, returning empty volume", "rec3D", 0) return model_blank(2, 2, 2), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx) fftvol_odd_file, weight_odd_file = prepare_recons_ctf( nx, imgdata, snr, symmetry, myid, main_node_odd, odd_start, 2, finfo, npad) fftvol_eve_file, weight_eve_file = prepare_recons_ctf( nx, imgdata, snr, symmetry, myid, main_node_eve, eve_start, 2, finfo, npad) del imgdata if nproc == 1: fftvol = get_image(fftvol_odd_file) weight = get_image(weight_odd_file) volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) fftvol = get_image(fftvol_eve_file) weight = get_image(weight_eve_file) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) fftvol = get_image(fftvol_odd_file) fftvol_tmp = get_image(fftvol_eve_file) fftvol += fftvol_tmp fftvol_tmp = None weight = get_image(weight_odd_file) weight_tmp = get_image(weight_eve_file) weight += weight_tmp weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd, voleve, volall = hsymVols(volodd, voleve, volall, hparams) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return volall, fscdat, volodd, voleve if nproc == 2: if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) weight = get_image(weight_odd_file) volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) else: assert myid == main_node_eve fftvol = get_image(fftvol_eve_file) weight = get_image(weight_eve_file) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) fftvol_tmp = recv_EMData(main_node_eve, tag_fftvol_eve) fftvol += fftvol_tmp fftvol_tmp = None weight = get_image(weight_odd_file) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) weight += weight_tmp weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) # if helical, find & apply symmetry to volume if hparams is not None: volodd, voleve, volall = hsymVols(volodd, voleve, volall, hparams) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return volall, fscdat, volodd, voleve else: assert myid == main_node_eve fftvol = get_image(fftvol_eve_file) send_EMData(fftvol, main_node_odd, tag_fftvol_eve) weight = get_image(weight_eve_file) send_EMData(weight, main_node_odd, tag_weight_eve) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank( nx, nx, nx) # cases from all other number of processors situations if myid == main_node_odd: fftvol = get_image(fftvol_odd_file) send_EMData(fftvol, main_node_eve, tag_fftvol_odd) if not (finfo is None): finfo.write("fftvol odd sent\n") finfo.flush() weight = get_image(weight_odd_file) send_EMData(weight, main_node_all, tag_weight_odd) if not (finfo is None): finfo.write("weight odd sent\n") finfo.flush() volodd = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) del fftvol, weight voleve = recv_EMData(main_node_eve, tag_voleve) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) volall = recv_EMData(main_node_all, tag_volall) # if helical, find & apply symmetry to volume if hparams is not None: volodd, voleve, volall = hsymVols(volodd, voleve, volall, hparams) fscdat = fsc_mask(volodd, voleve, mask3D, rstep, fsc_curve) os.system("rm -f " + fftvol_odd_file + " " + weight_odd_file) return volall, fscdat, volodd, voleve if myid == main_node_eve: ftmp = recv_EMData(main_node_odd, tag_fftvol_odd) fftvol = get_image(fftvol_eve_file) Util.add_img(ftmp, fftvol) send_EMData(ftmp, main_node_all, tag_fftvol_eve) del ftmp weight = get_image(weight_eve_file) send_EMData(weight, main_node_all, tag_weight_eve) voleve = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(voleve, main_node_odd, tag_voleve) os.system("rm -f " + fftvol_eve_file + " " + weight_eve_file) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx) if myid == main_node_all: fftvol = recv_EMData(main_node_eve, tag_fftvol_eve) if not (finfo is None): finfo.write("fftvol odd received\n") finfo.flush() weight = recv_EMData(main_node_odd, tag_weight_odd) weight_tmp = recv_EMData(main_node_eve, tag_weight_eve) Util.add_img(weight, weight_tmp) weight_tmp = None volall = recons_ctf_from_fftvol(nx, fftvol, weight, snr, symmetry, npad) send_EMData(volall, main_node_odd, tag_volall) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx) return model_blank(nx, nx, nx), None, model_blank(nx, nx, nx), model_blank(nx, nx, nx)