def _roll_standardize(data, n):
    arr = np.array(data)
    value = [ut.standardize(arr[i - n:i])[-1] for i in range(n, len(arr))]
    value = np.concatenate([[0] * n, value])
    ss = pd.Series(value).ffill().fillna(0)
    value = ss.values
    return value.astype(float)
Exemple #2
0
 def construct_raicar_components(self):
     '''
     Averages the aligned ICA runs and calculates the reproducibility for each component.  avgMethod and
     canonSigns controls the method of component formation and reproducibility indices calculated.
     '''
     if not os.path.exists(self.racDirectory):
         try:
             os.mkdir(self.racDirectory)
         except OSError:
             pass
     alnFiles = glob.glob(os.path.join(self.alnDirectory, 'alnRun_*.h5'))
     if len(alnFiles) == 0:
         print 'ERROR :  Components have not been aligned yet.'
         return
     # temp variables to hold the answer
     gc.collect()
     raicarSources = []
     raicarMixing = []
     repro = []
     for f in alnFiles:
         print 'Constructing raicar comfponent from file %s' % f
         fPtr = tb.open_file(f, 'r')
         sc = fPtr.get_node('/aligned/sources').read()
         ac = fPtr.get_node('/aligned/mixing').read()
         fPtr.close()
         if self.canonSigns:
             sc, ac = self.canonicalize_signs(sc, ac)
         methodToUse = self.avgMethod + '_average_aligned_runs'
         avgSource, avgMix, rep = getattr(self, methodToUse)(sc, ac)
         raicarSources.append(avgSource)
         raicarMixing.append(avgMix)
         repro.append(rep)
     # collapse and make a component
     self.raicarSources = np.vstack(raicarSources)
     self.raicarMixing = np.vstack(raicarMixing).T
     self.reproducibility = repro
     # adjust std. dev. of RAICAR sources
     self.raicarSources = standardize(self.raicarSources, stdtype='row')
     # save the result, PyTables again
     h5Ptr = tb.open_file(os.path.join(self.racDirectory, 'components.h5'),
                          mode="w",
                          title='RAICAR Component')
     raicar = h5Ptr.create_group(h5Ptr.root, 'raicar', 'RAICAR Component')
     h5Ptr.create_array(raicar, 'sources', self.raicarSources, "S")
     h5Ptr.create_array(raicar, 'mixing', self.raicarMixing, "A")
     h5Ptr.close()
     # this can just be pickled - it's not that large
     fPtr = open(os.path.join(self.racDirectory, 'reproducibility.db'),
                 'wb')
     cPickle.dump(self.reproducibility, fPtr, protocol=-1)
     fPtr.close()
Exemple #3
0
 def construct_raicar_components(self):
     '''
     Averages the aligned ICA runs and calculates the reproducibility for each component.  avgMethod and
     canonSigns controls the method of component formation and reproducibility indices calculated.
     '''
     if not os.path.exists(self.racDirectory):
         try:
             os.mkdir(self.racDirectory)
         except OSError:
             pass
     alnFiles = glob.glob(os.path.join(self.alnDirectory,'alnRun_*.h5'))
     if len(alnFiles) == 0:
         print 'ERROR :  Components have not been aligned yet.'
         return
     # temp variables to hold the answer
     gc.collect()
     raicarSources = []
     raicarMixing = []
     repro = []
     for f in alnFiles:
         print 'Constructing raicar comfponent from file %s' % f
         fPtr = tb.open_file(f,'r')
         sc = fPtr.get_node('/aligned/sources').read()
         ac = fPtr.get_node('/aligned/mixing').read()
         fPtr.close()
         if self.canonSigns:
             sc,ac = self.canonicalize_signs(sc,ac)
         methodToUse = self.avgMethod+'_average_aligned_runs'
         avgSource,avgMix,rep = getattr(self,methodToUse)(sc,ac)
         raicarSources.append(avgSource)
         raicarMixing.append(avgMix)
         repro.append(rep)
     # collapse and make a component
     self.raicarSources = np.vstack(raicarSources)
     self.raicarMixing = np.vstack(raicarMixing).T
     self.reproducibility = repro
     # adjust std. dev. of RAICAR sources
     self.raicarSources = standardize(self.raicarSources,stdtype='row')
     # save the result, PyTables again
     h5Ptr = tb.open_file(os.path.join(self.racDirectory,'components.h5'),mode="w",title='RAICAR Component')
     raicar = h5Ptr.create_group(h5Ptr.root,'raicar','RAICAR Component')
     h5Ptr.create_array(raicar,'sources',self.raicarSources,"S")
     h5Ptr.create_array(raicar,'mixing',self.raicarMixing,"A")
     h5Ptr.close()
     # this can just be pickled - it's not that large
     fPtr = open(os.path.join(self.racDirectory,'reproducibility.db'),'wb')
     cPickle.dump(self.reproducibility,fPtr,protocol=-1)
     fPtr.close()
    def PreparingData(self):
        if self._status == "l":
            my_shelve = shelve.open(self.__filename)
            return self.__filename
        elif self._status == "s":
            X_train, labels_train, list_ch_train = ut.read_data(
                data_path=self.__pathDS, split="train")  # train

            X_test, labels_test, list_ch_test = ut.read_data(
                data_path=self.__pathDS, split="test")  # test

            features_train = ut.read_Features(data_path=self.__pathDS,
                                              split="train")  # features train
            features_test = ut.read_Features(data_path=self.__pathDS,
                                             split="test")  # features train

            assert list_ch_train == list_ch_test, "Mistmatch in channels!"

            # Normalize?
            X_train, X_test = ut.standardize(X_train, X_test)
            # X_tr, X_vld, lab_tr, lab_vld = train_test_split(X_train, labels_train,
            #                                                 stratify=labels_train, random_state=123)

            # One-hot encoding:
            y_tr = ut.one_hot(labels_train)
            # y_vld = ut.one_hot(lab_vld)
            y_test = ut.one_hot(labels_test)

            my_shelve = shelve.open(self.__filename, 'n')
            my_shelve['data_train'] = X_train
            # my_shelve['data_vld'] = X_vld
            my_shelve['data_test'] = X_test
            my_shelve['labels_train'] = y_tr
            my_shelve['labels_test'] = y_test
            # my_shelve['labels_vld'] = y_vld
            my_shelve['labels_test'] = y_test
            my_shelve['features_train'] = features_train
            my_shelve['features_test'] = features_test
            return self.__filename
Exemple #5
0
 def construct_bicar_components(self):
     '''
     Averages the aligned ICA runs (both temporal and spatial) and calculates the reproducibility 
     for each component.  avgMethod and canonSigns controls the method of component formation and 
     reproducibility indices calculated.
     '''
     if not os.path.exists(self.racDirectory):
         try:
             os.mkdir(self.racDirectory)
         except OSError:
             pass
     # have to do both temporal and spatial
     tAlnFiles = glob.glob(os.path.join(self.alnDirectory, 'alnRun_t_*.h5'))
     sAlnFiles = glob.glob(os.path.join(self.alnDirectory, 'alnRun_s_*.h5'))
     if len(tAlnFiles) == 0 or len(sAlnFiles) == 0:
         if self.reportLevel > 0:
             print 'ERROR :  Components have not been aligned yet.'
         return
     # temp variables to hold the answer
     raicarSources = []
     raicarMixing = []
     repro = []
     for f in tAlnFiles:
         if self.reportLevel > 1:
             print 'Constructing temporal bicar component from file %s' % f
         fPtr = tb.openFile(f, 'r')
         sc = fPtr.getNode('/aligned/sources').read()
         ac = fPtr.getNode('/aligned/mixing').read()
         fPtr.close()
         if self.canonSigns:
             sc, ac = self.canonicalize_signs(sc, ac)
         methodToUse = self.avgMethod + '_average_aligned_runs'
         avgSource, avgMix, rep = getattr(self, methodToUse)(sc, ac)
         raicarSources.append(avgSource)
         raicarMixing.append(avgMix)
         repro.append(rep)
     # collapse and make a component
     self.temporalSources = np.vstack(raicarSources)
     self.temporalMixing = np.vstack(raicarMixing).T
     self.reproducibility = repro
     # adjust std. dev. of RAICAR sources
     self.temporalSources = standardize(self.temporalSources, stdtype='row')
     # save the result, PyTables again
     h5Ptr = tb.openFile(os.path.join(self.racDirectory,
                                      'temporal_components.h5'),
                         mode="w",
                         title='RAICAR Component')
     bicar = h5Ptr.createGroup(h5Ptr.root, 'bicar', 'RAICAR Component')
     h5Ptr.createArray(bicar, 'sources', self.temporalSources, "S")
     h5Ptr.createArray(bicar, 'mixing', self.temporalMixing, "A")
     h5Ptr.close()
     # repeat the whole thing for the spatial sources
     raicarSources = []
     raicarMixing = []
     repro = []
     for f in sAlnFiles:
         if self.reportLevel > 1:
             print 'Constructing spatial bicar component from file %s' % f
         fPtr = tb.openFile(f, 'r')
         sc = fPtr.getNode('/aligned/sources').read()
         ac = fPtr.getNode('/aligned/mixing').read()
         fPtr.close()
         if self.canonSigns:
             sc, ac = self.canonicalize_signs(sc, ac)
         methodToUse = self.avgMethod + '_average_aligned_runs'
         avgSource, avgMix, rep = getattr(self, methodToUse)(sc, ac)
         raicarSources.append(avgSource)
         raicarMixing.append(avgMix)
         repro.append(rep)
     # collapse and make a component
     self.spatialSources = np.vstack(raicarSources)
     self.spatialMixing = np.vstack(raicarMixing).T
     # average reproducibility
     for i in range(0, len(self.reproducibility)):
         self.reproducibility[
             i] = 0.5 * self.reproducibility[i] + 0.5 * repro[i]
     # save the result, PyTables again
     h5Ptr = tb.openFile(os.path.join(self.racDirectory,
                                      'spatial_components.h5'),
                         mode="w",
                         title='RAICAR Component')
     bicar = h5Ptr.createGroup(h5Ptr.root, 'bicar', 'RAICAR Component')
     h5Ptr.createArray(bicar, 'sources', self.spatialSources, "S")
     h5Ptr.createArray(bicar, 'mixing', self.spatialMixing, "A")
     h5Ptr.close()
     # this can just be pickled - it's not that large
     fPtr = open(os.path.join(self.racDirectory, 'reproducibility.db'),
                 'wb')
     cPickle.dump(self.reproducibility, fPtr, protocol=-1)
     fPtr.close()
Exemple #6
0
    from Create_rnd_Net_initializeALL import Create_rnd_Net

#%%initialize
trn_acc_2rnd = np.zeros((num_epochs, num_trials))
vld_acc_2rnd = np.zeros((num_epochs, num_trials))
trn_acc_1Bsg = np.zeros((num_epochs, num_trials, num_Fuse))
vld_acc_1Bsg = np.zeros((num_epochs, num_trials, num_Fuse))
trn_acc_1rnd = np.zeros((num_epochs, num_trials, num_Fuse))
vld_acc_1rnd = np.zeros((num_epochs, num_trials, num_Fuse))

#%% Prepare Data

num_classes = 10
# # Loading train set and test set
x_train, x_test, label_train, label_test = get_train_test()
x_train, x_test = standardize(x_train, x_test)

# One-hot encoding:
y_train = to_categorical(label_train)
y_test = to_categorical(label_test)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

#z-score
mean = np.mean(x_train, axis=(0, 1, 2))
std = np.std(x_train, axis=(0, 1, 2))
x_train = (x_train - mean) / (std + 1e-7)
x_test = (x_test - mean) / (std + 1e-7)

Exemple #7
0
    from build_234layer_1dconv_graph_he import build_234layer_1dconv_graph
else:
    from build_234layer_1dconv_graph_rnd import build_234layer_1dconv_graph


par = {'batch_size':batch_size,'seq_len':seq_len,'lrn_rate':lrn_rate,'epochs':epochs,
         'krnl_sz':krnl_sz,'krnl_sz_Bsg':krnl_sz_Bsg,'L':L,'K':K,'n_classes':n_classes,'n_channels':n_channels
          ,'n_outchannel':N,'Spool':Spool,'Sconv':Sconv,'num_trials':num_trials,'act_func':act_func}
#%% Prepare data

X_train, labels_train, list_ch_train = read_data(data_path="data/", split="train") # train
X_test, labels_test, list_ch_test = read_data(data_path="data/", split="test") # test

assert list_ch_train == list_ch_test, "Mistmatch in channels!"
# Normalize?
X_train, X_test = standardize(X_train, X_test)

# Train/Validation Split
X_tr, X_vld, lab_tr, lab_vld = train_test_split(X_train, labels_train,
                                                stratify = labels_train, random_state = 123)

# One-hot encoding:
y_tr = one_hot(lab_tr)
y_vld = one_hot(lab_vld)
y_test = one_hot(labels_test)

X_tr = X_tr[:,:,0:n_channels]
X_test = X_test[:,:,0:n_channels]
X_vld = X_vld[:,:,0:n_channels]

#%% initialization: