def cluster_points(scattered_points, filename): # Set up problem # Note: max_distance gets used in division later on. Hence, the max(.., 1) # is used to prevent a division by zero coordinates = [Coordinate(x, y) for x, y in scattered_points] max_distance = max(get_max_distance(coordinates), 1) # Build constraints csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY) # Apply constraint: coordinate can only be in one colour group choose_one_group = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} for coord in coordinates: csp.add_constraint(choose_one_group, (coord.r, coord.g, coord.b)) # Build initial BQM bqm = dwavebinarycsp.stitch(csp) # Edit BQM to bias for close together points to share the same color for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight d = get_distance(coord0, coord1) / max_distance # rescale distance weight = -math.cos(d * math.pi) # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.b, weight) # Edit BQM to bias for far away points to have different colors for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight # Note: rescaled and applied square root so that far off distances # are all weighted approximately the same d = math.sqrt(get_distance(coord0, coord1) / max_distance) weight = -math.tanh(d) * 0.1 # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.b, weight) bqm.add_interaction(coord0.r, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.r, weight) bqm.add_interaction(coord0.b, coord1.g, weight) bqm.add_interaction(coord0.g, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.b, weight) # Submit problem to D-Wave sampler sampler = EmbeddingComposite(DWaveSampler(solver={'qpu': True})) #sampler = neal.SimulatedAnnealingSampler() sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000) best_sample = sampleset.first.sample # Visualize graph problem dwave.inspector.show(bqm, sampleset) # Visualize solution groupings = get_groupings(best_sample) visualize_groupings(groupings, filename) return groupings
def clustering(scattered_points, filename): kmeans = KMeans(n_clusters=8, random_state=42, init='k-means++', n_init=10, max_iter=30, algorithm='full').fit(scattered_points) groupings = {} dist_from_cent = {} for i in range(Number_Deliveries): groupings[str(i)] = [] dist_from_cent[str(i)] = [] for i in range(len(scattered_points)): for key in groupings.keys(): if str(kmeans.labels_[i]) == key: groupings[key].append(scattered_points[i]) #print(groupings) visualize_groupings(groupings, filename) return groupings
def cluster_points(scattered_points, filename, architecture): # Set up problem # Note: max_distance gets used in division later on. Hence, the max(.., 1) # is used to prevent a division by zero coordinates = [Coordinate(x, y) for x, y in scattered_points] max_distance = max(get_max_distance(coordinates), 1) # Build constraints csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY) # Apply constraint: coordinate can only be in one colour group choose_one_group = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} for coord in coordinates: csp.add_constraint(choose_one_group, (coord.r, coord.g, coord.b)) # Build initial BQM bqm = dwavebinarycsp.stitch(csp) # Edit BQM to bias for close together points to share the same color for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight d = get_distance(coord0, coord1) / max_distance # rescale distance weight = -math.cos(d * math.pi) # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.b, weight) # Edit BQM to bias for far away points to have different colors for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight # Note: rescaled and applied square root so that far off distances # are all weighted approximately the same d = math.sqrt(get_distance(coord0, coord1) / max_distance) weight = -math.tanh(d) * 0.1 # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.b, weight) bqm.add_interaction(coord0.r, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.r, weight) bqm.add_interaction(coord0.b, coord1.g, weight) bqm.add_interaction(coord0.g, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.b, weight) # Submit problem to D-Wave sampler if architecture == 'pegasus': solver = DWaveSampler(solver={ 'topology__type': 'pegasus', 'qpu': True }) print(solver.solver) sampler = EmbeddingComposite(solver) else: solver = DWaveSampler(solver={ 'topology__type': 'chimera', 'qpu': True }) print(solver.solver) sampler = EmbeddingComposite(solver) sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000, return_embedding=True) best_sample = sampleset.first.sample # Inspect the embedding embedding = sampleset.info['embedding_context']['embedding'] num_qubits = 0 for k in embedding.values(): num_qubits += len(k) print("Number of qubits used in embedding = " + str(num_qubits)) # Visualize graph problem dwave.inspector.show(bqm, sampleset) # Visualize solution groupings = get_groupings(best_sample) visualize_groupings(groupings, filename) # Print solution onto terminal # Note: This is simply a more compact version of 'best_sample' print(groupings)
def cluster_points(scattered_points, filename): # Set up problem coordinates = [Coordinate(x, y) for x, y in scattered_points] max_distance = get_max_distance(coordinates) # Build constraints csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY) # Apply constraint: coordinate can only be in one colour group choose_one_group = allowed_States(k) for coord in coordinates: mylist = list(vars(coord).values()) mylist.remove(coord.x) mylist.remove(coord.y) csp.add_constraint(choose_one_group, mylist) # Build initial BQM bqm = dwavebinarycsp.stitch(csp) # Edit BQM to bias for close together points to share the same color for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight d = get_distance(coord0, coord1) / max_distance # rescale distance weight = -math.cos(d * math.pi) # Apply weights to BQM for i in range(k): bqm.add_interaction(getattr(coord0, "x" + str(i)), getattr(coord1, "x" + str(i)), weight) # Edit BQM to bias for far away points to have different colors for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight # Note: rescaled and applied square root so that far off distances # are all weighted approximately the same d = math.sqrt(get_distance(coord0, coord1) / max_distance) weight = -math.tanh(d) * 0.1 # Apply weights to BQM for p in range(k): for m in range(k): if p != m: bqm.add_interaction(getattr(coord0, "x" + str(p)), getattr(coord1, "x" + str(m)), weight) # Submit problem to D-Wave sampler sampler = EmbeddingComposite(DWaveSampler(solver={'qpu': True})) sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000) best_sample = sampleset.first.sample # Visualize graph problem dwave.inspector.show(bqm, sampleset) # Visualize solution groupings = get_groupings(best_sample) visualize_groupings(groupings, filename) # Print solution onto terminal # Note: This is simply a more compact version of 'best_sample' print(groupings)
def cluster_points(scattered_points, filename, problem_inspector): """Perform clustering analysis on given points Args: scattered_points (list of tuples): Points to be clustered filename (str): Output file for graphic problem_inspector (bool): Whether to show problem inspector """ # Set up problem # Note: max_distance gets used in division later on. Hence, the max(.., 1) # is used to prevent a division by zero coordinates = [Coordinate(x, y) for x, y in scattered_points] max_distance = max(get_max_distance(coordinates), 1) # Build constraints csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY) # Apply constraint: coordinate can only be in one colour group choose_one_group = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} for coord in coordinates: csp.add_constraint(choose_one_group, (coord.r, coord.g, coord.b)) # Build initial BQM bqm = dwavebinarycsp.stitch(csp) # Edit BQM to bias for close together points to share the same color for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight d = get_distance(coord0, coord1) / max_distance # rescale distance weight = -math.cos(d * math.pi) # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.b, weight) # Edit BQM to bias for far away points to have different colors for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i + 1:]: # Set up weight # Note: rescaled and applied square root so that far off distances # are all weighted approximately the same d = math.sqrt(get_distance(coord0, coord1) / max_distance) weight = -math.tanh(d) * 0.1 # Apply weights to BQM bqm.add_interaction(coord0.r, coord1.b, weight) bqm.add_interaction(coord0.r, coord1.g, weight) bqm.add_interaction(coord0.b, coord1.r, weight) bqm.add_interaction(coord0.b, coord1.g, weight) bqm.add_interaction(coord0.g, coord1.r, weight) bqm.add_interaction(coord0.g, coord1.b, weight) # Submit problem to D-Wave sampler sampler = EmbeddingComposite(DWaveSampler()) sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000, label='Example - Clustering') best_sample = sampleset.first.sample # Visualize graph problem if problem_inspector: dwave.inspector.show(bqm, sampleset) # Visualize solution groupings = get_groupings(best_sample) visualize_groupings(groupings, filename) # Print solution onto terminal # Note: This is simply a more compact version of 'best_sample' print(groupings)