Exemple #1
0
 def setUp(self):
     TorchUtils.set_rnd_seed(1)
     self.general_args = {
         'experiment_type': 'mnist_adversarial',
         'output_root': './src/tests/logs',
         'param_file_path': None
     }
     self.params_overload = {"adv_attack_test": dict()}
     self.test_name = self.id().split('.')[-1]
     logger_utilities.init_logger(
         logger_name=self.test_name,
         output_root=self.general_args['output_root'])
     self.logger = logger_utilities.get_logger()
Exemple #2
0
import jsonargparse
import os
import torch
import time

import logger_utilities
from experimnet_utilities import Experiment
from utilities import TorchUtils
from adversarial.attacks import get_attack
TorchUtils.set_rnd_seed(1)
# Uncomment for performance. Comment for debug and reproducibility
# torch.backends.cudnn.enable = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
import json


def eval_adversarial_dataset(model,
                             dataloader,
                             attack,
                             save_adv_sample: bool = False):
    """
    Evaluate model performance on dataloader with attack
    :param model:
    :param dataloader:
    :param attack:
    :param save_adv_sample:
    :return:
    """
    try:
        torch.cuda.reset_max_memory_allocated()