else: data_files, add_to_name, data_config = common_code() algo_name = algo_core+algo_type+"MultiStep"+str(multistep) +"Window"+\ str(window_size)+anomalyScore_func+anomalyScore_type+add_to_name model = predictionLstmStepAhead(input_shape, multistep) result_files = use_whole_data(data_files, input_shape, train_nStepPrediction_based_models_new, model, nStepAhead=multistep, nb_epoch=nb_epoch, anomaly_score=anomalyScore_type) print(algo_name) write_result(algorithm_name=algo_name, data_files=result_files, results_path=cwd + '/results') store_param(window_size, nb_epoch, input_shape, algo_core, algo_type, algo_name, model, normalized_input, anomalyScore_func, anomalyScore_type, multistep) #for i in range(len(df)): # a.append(al.anomalyProbability(df.value.values[i],df.anomaly_score.values[i],df.timestamp.values[i])) # 1- Params of model # 2- Params of training # 3- Get model # 4- Get type of training # 5- Train and get result # 6- Write output and params
from utility import read_data, train_prediction_based_models, use_whole_data, write_result, common_code, store_param, common_code_normalized from models import predictionCnn import os cwd = os.getcwd() window_size = 10 nb_epoch = 1 nb_features = 1 input_shape = (window_size, nb_features) model = predictionCnn(input_shape) data_files, add_to_name, data_config = common_code_normalized() result_files = data_files result_files = use_whole_data(data_files, input_shape, train_prediction_based_models, model, nb_epoch=nb_epoch) algo_type = "predictionCnnOneEpoch" algo_name = algo_type + add_to_name print(algo_name) write_result(algorithm_name=algo_name, data_files=result_files, results_path=cwd + '/results') store_param(window_size, nb_epoch, input_shape, algo_type, algo_name, model, data_config)