Exemple #1
0
    def make_records(self):  # record all the results' details into files
        print("in make record. we will calculate metrics after here.")
        _, Decoder = self.sess.run(
            [self.cost, self.Decoder],
            feed_dict={
                self.input_R_U: self.train_R,
                self.input_R_I: self.train_R,
                self.input_OH_I: self.I_OH_mat,
                self.input_P_cor: [[0, 0]],
                self.input_N_cor: [[0, 0]],
                self.row_idx: np.reshape(xrange(self.num_rows),
                                         (self.num_rows, 1)),
                self.col_idx: np.reshape(xrange(self.num_cols),
                                         (self.num_cols, 1))
            })
        if self.base == 'i':
            [precision, recall, f_score,
             NDCG] = utility.test_model_all(Decoder.T, self.vali_R.T,
                                            self.train_R.T, self.price_R.T,
                                            'save_intermediate_results')
        else:
            [precision, recall, f_score,
             NDCG] = utility.test_model_all(Decoder, self.vali_R, self.train_R,
                                            self.price_R,
                                            'save_intermediate_results')

        utility.metric_record(precision, recall, f_score, NDCG, self.args,
                              self.metric_path)

        utility.test_model_factor(Decoder, self.vali_R, self.train_R)

        return precision, recall, f_score, NDCG
Exemple #2
0
    def make_records(self):  # record all the results' details into files
        _, Decoder, l1, l2 = self.sess.run(
            [self.cost, self.Decoder, self.pre_cost3, self.pre_cost4],
            feed_dict={
                self.input_R_U: self.train_R,
                self.input_R_I: self.train_R,
                self.input_OH_U: self.U_OH_mat,
                self.input_OH_I: self.I_OH_mat,
                self.input_P_cor: [[0, 0]],
                self.input_N_cor: [[0, 0]],
                self.row_idx: np.reshape(range(self.num_rows),
                                         (self.num_rows, 1)),
                self.col_idx: np.reshape(range(self.num_cols),
                                         (self.num_cols, 1))
            })
        if self.base == 'i':
            [precision, recall, f_score, NDCG,
             r_f_table] = utility.test_model_all(Decoder.T, self.vali_R.T,
                                                 self.train_R.T)
        else:
            [precision, recall, f_score, NDCG,
             r_f_table] = utility.test_model_all(Decoder, self.vali_R,
                                                 self.train_R)

        utility.metric_record(precision, recall, f_score, NDCG, self.args,
                              self.metric_path)

        utility.test_model_factor(Decoder, self.vali_R, self.train_R)

        print("******** max_epoch ********")
        print(self.max_epoch)

        return precision, recall, f_score, NDCG
Exemple #3
0
    def make_records(self):  # record all the results' details into files
        _, Decoder = self.sess.run(
            [self.cost, self.Decoder],
            feed_dict={
                self.input_R_U: self.train_R,
                self.input_R_U_index: self.U_OH_mat,
                self.is_training_ph: 0,
                self.anneal_ph: 0.2,
                self.row_idx: np.reshape(range(self.num_rows),
                                         (self.num_rows, 1))
            })
        if self.base == 'i':
            [precision, recall, f_score, NDCG,
             r_f_table] = utility.test_model_all(Decoder.T, self.vali_R.T,
                                                 self.train_R.T)
        else:
            [precision, recall, f_score, NDCG,
             r_f_table] = utility.test_model_all(Decoder, self.vali_R,
                                                 self.train_R)

        utility.metric_record(precision, recall, f_score, NDCG, self.args,
                              self.metric_path)

        utility.test_model_factor(Decoder, self.vali_R, self.train_R)

        print("******** max_epoch ********")
        print(self.max_epoch)

        return precision, recall, f_score, NDCG