def __init__(self, config):
        """
        Args:
            config: config file of the current model
        """

        self.config = config
        # load data here
        d = DataLoader(self.config)
        # Get the filenames and labels
        self.filenames, self.labels = d.get_sub_dataset(self.config.image_size)
        # Create the Dataset using Tensorflow Data API
        self.dataset = tf.data.Dataset.from_tensor_slices(self.filenames)
        # Apply parse function to get the numpy array of the images
        self.dataset = self.dataset.map(
            map_func=self._parse_function,
            num_parallel_calls=self.config.num_parallel_calls)
        # Shuffle the dataset
        #self.dataset = self.dataset.shuffle(self.config.buffer_size)
        # Repeat the dataset indefinitely
        self.dataset = self.dataset.repeat(self.config.num_epochs)
        # Applying prefetch to increase the performance
        # Prefetch the next 10 batches
        self.dataset = self.dataset.prefetch(buffer_size=10 *
                                             config.batch_size)
        # Apply batching
        self.dataset = self.dataset.batch(config.batch_size)
        self.iterator = self.dataset.make_initializable_iterator()
        self.image = self.iterator.get_next()
Exemple #2
0
 def handle(self, *args, **options):
     url = settings.SHAREPOINT_URL
     username = settings.SHAREPOINT_USERNAME
     password = settings.SHAREPOINT_PASSWORD
     documents = settings.DOCUMENTS_URL
     loader = DataLoader(url, username, password, documents)
     print("Caricamento file excel")
     (nuovi, aggiornati) = loader.load_remote_into_db()
     print(
         f'Ho inserito {nuovi} nuovi iscritti e aggiornato gli altri {aggiornati}'
     )
Exemple #3
0
 def aggiorna_lista(self, s: list, t_user: str,
                    t_chat: dict) -> JsonResponse:
     if self.check_admin(t_user, t_chat["id"]):
         url = settings.SHAREPOINT_URL
         username = settings.SHAREPOINT_USERNAME
         password = settings.SHAREPOINT_PASSWORD
         documents = settings.DOCUMENTS_URL
         loader = DataLoader(url, username, password, documents)
         send_message(f'Sto leggendo il file excel remoto', t_chat["id"])
         (nuovi, aggiornati) = loader.loadRemoteIntoDb()
         send_message(
             f'Ho inserito {nuovi} nuovi iscritti e aggiornato gli altri {aggiornati}',
             t_chat["id"])
     return JsonResponse({"ok": "POST request processed"})
Exemple #4
0
def data_generation(labels_dir_path, img_dir_path, batch_size=4, inputshape=(224, 224, 3)):
    aug = iaa.Sequential([
        iaa.Crop(px=(0, 40)),  # crop images from each side by 0 to 16px (randomly chosen)
        iaa.Fliplr(0.5),  # horizontally flip 50% of the images
        sometimes(iaa.Affine(
            scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
            # scale images to 80-120% of their size, individually per axis
            translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},  # translate by -20 to +20 percent (per axis)
            rotate=(-45, 45),  # rotate by -45 to +45 degrees
        )),
    ], random_order=True)
    dataLoaderRGB = DataLoader(batch_size=batch_size, img_dir_path=img_dir_path,
                               labels_dir_path=labels_dir_path, input_shape=inputshape, aug=aug)
    return dataLoaderRGB.generator()
Exemple #5
0
 def __init__(self):
     # self.config = config
     # load data here
     d = DataLoader("./data")
     # Get the filenames and labels
     self.filenames, self.labels = d.get_sub_dataset(28)
     #assert len(self.filenames) == len(self.labels)
     # Create the Dataset using Tensorflow Data API
     self.dataset = tf.data.Dataset.from_tensor_slices(self.filenames)
     # Apply parse function to get the numpy array of the images
     self.dataset = self.dataset.map(self._parse_function)
     # Shuffle the dataset
     self.dataset = self.dataset.shuffle(self.filenames.get_shape()[0])
     # Apply batching
     self.dataset = self.dataset.batch(50)
Exemple #6
0
def plot_sentiment_against_utd_results(
        sentiment_per_week: List[float]) -> None:
    utd_results = DataLoader.load_utd_results()
    max_sent = max(sentiment_per_week)
    aligned_sentiment = [s / max_sent for s in sentiment_per_week]
    Plotter.dual_line_plot(aligned_sentiment,
                           utd_results,
                           labels=["sentiment", "ppw"])
Exemple #7
0
def filter_on_language(
        dataset: List[TimestampedText]) -> List[TimestampedText]:
    eng_stopwords = DataLoader.load_stopwords_file()

    def is_english(doc: TimestampedText) -> bool:
        pass

    eng_content = [d for d in dataset if is_english(d)]
    return eng_content
Exemple #8
0
    def __init__(self, dirpath):
        self.optimizer = None
        self.learning_rate = None
        self.batch_size = None
        self.metrics = None
        self.loss = None
        self.epochs = None
        self.dirpath = dirpath
        self.tensorboard = self.create_tb_callbacks("./tensorboards/"+self.dirpath+'/'+type(self).__name__)
        self.name_model = os.getcwd() + '/saved_models/'+self.dirpath+'/'+type(self).__name__+".h5"
        self.data_gen = DataLoader(dirpath=dirpath, batch_size=self.batch_size,
                                                        downsample_factor=0)
        self.data_gen.build_data()
        self.output_size = self.data_gen.get_output_size()
        img_w = self.data_gen.img_w
        img_h = self.data_gen.img_h

        if K.image_data_format() == 'channels_first':
            self.input_shape = (1, img_w, img_h)
        else:
            self.input_shape = (img_w, img_h, 1)
Exemple #9
0
class EnvMaker:
    def __init__(self) -> None:
        self.dl = DataLoader()
        self.train, self.test = pd.DataFrame(), pd.DataFrame()

    def make_dummy_env(self, dataset, env_args):
        env = gym.make("crypt-v001", df=dataset, **env_args)
        check_env(env)
        env = DummyVecEnv([lambda: env])
        env = VecCheckNan(env, raise_exception=True)
        env = VecNormalize(
            env, norm_obs=True, norm_reward=False, clip_obs=10.0, gamma=0.95
        )
        return env

    def make_dummy_train_test_env(self, env_args):
        if (self.train.empty) or (self.test.empty) :
            self.train, self.test = self.dl.get_train_test_dataset()

        train_env = self.make_dummy_env(dataset=self.train, env_args=env_args)
        test_env = self.make_dummy_env(dataset=self.test, env_args=env_args)
        return train_env, test_env

    def make_vec_env(self,dataset, env_args):
        env_args["df"]= dataset
        env = make_vec_env('crypt-v001', env_kwargs=env_args)
        env = VecCheckNan(env, raise_exception=True)
        env = VecNormalize(
            env, norm_obs=True, norm_reward=False, clip_obs=10.0, gamma=0.95
        )
        return env

    def make_vec_train_test_env(self,env_args):
        if (self.train.empty) or (self.test.empty) :
            self.train, self.testd = self.dl.get_train_test_dataset()

        train_env = self.make_vec_env(dataset=self.train, env_args=env_args)
        test_env = self.make_vec_env(dataset=self.test, env_args=env_args)
        return train_env, test_env
Exemple #10
0
def run_pipeline() -> List[TimestampedText]:
    dataset = DataLoader.load_dataset_from_file()
    print(f"Loaded dataset with {len(dataset)} entries")
    no_junk_in_my_trunk = remove_junk_content(dataset)
    print(
        f"Junk removal removed {len(dataset) - len(no_junk_in_my_trunk)}. {len(no_junk_in_my_trunk)} remaining."
    )
    only_english_entries = filter_on_language(no_junk_in_my_trunk)
    print(
        f"Language filter removed {len(no_junk_in_my_trunk) - len(only_english_entries)}. {len(only_english_entries)} remaining."
    )
    only_relevant = relevant_sentences(only_english_entries)
    print(len(only_relevant), "sentences selected.")
    return only_relevant
Exemple #11
0
def main():
    loader = DataLoader(source_dir=SOURCE_DIR,
                        source_ext=SOURCE_EXT,
                        solution_dir=SOLUTION_DIR,
                        solution_ext=SOLUTION_EXT)
    n, flow_matrix, distance_matrix = loader.load_source(FILES[FILE_INDEX])
    optimal_sol = loader.load_results(FILES[FILE_INDEX])[1]

    results = genetic_solver(n, flow_matrix, distance_matrix)
    # optimal_sol = brute_force_solver(n, flow_matrix, distance_matrix)[0]
    random_res = random_solver(n, flow_matrix, distance_matrix,
                               TIMES_RANDOM)[0]
    greedy_res = greedy_solver(n, flow_matrix, distance_matrix)

    save_results_to_csv(results)

    graph_filename = 'graph'
    graph_path = os.path.join(RESULTS_DIR, (graph_filename + '.png'))
    plot_graph(results,
               path=graph_path,
               random_res=random_res,
               greedy_res=greedy_res,
               optimal_sol=optimal_sol)
def run(args):
    loader = DataLoader()
    logger.info("Loading data Gram matrices ...")
    X0, Xte0, X1, Xte1, X2, Xte2 = get_kernels(args, loader)
    ytr0, ytr1, ytr2 = get_labels(loader)
    logger.info("Prediction on dataset 0 ...")
    ypred0 = predict(X0, ytr0, 1.6e-3, Xte0)
    logger.info("Prediction on dataset 1 ...")
    ypred1 = predict(X1, ytr1, 1.1e-3, Xte1)
    logger.info("Prediction on dataset 2...")
    ypred2 = predict(X2, ytr2, .00081895, Xte2)

    list_preds = []
    for y_pred_test in [ypred0, ypred1, ypred2]:
        y_pred_test[y_pred_test == -1] = 0
        y_pred_test = y_pred_test.astype(int)
        list_preds += y_pred_test.tolist()

    with open("Yte.csv", 'w') as f:
        f.write('Id,Bound\n')
        for i in range(len(list_preds)):
            f.write(str(i) + ',' + str(list_preds[i]) + '\n')
    logger.info("Results saved in Yte.csv! ")
Exemple #13
0
from ModelBaseClass import ModelBaseClass
from utils.DataLoader import DataLoader

class FixedDoseBaseline(ModelBaseClass):
    def __init__(self, data_loader):
        super(FixedDoseBaseline, self).__init__(data_loader)

    def next_action(self, patient):
        return self.MED_DOSE


if __name__ == '__main__':
    baseline = FixedDoseBaseline(DataLoader("data/warfarin_clean.csv"))
    cum_regret, avg_regret = baseline.evaluate_online()
    print("cum_regret {}, avg_regret {}".format(cum_regret, avg_regret))

Exemple #14
0
 def setUp(self) -> None:
     physical_devices = tf.config.list_physical_devices('GPU')
     if physical_devices is not None and len(physical_devices) > 0:
         tf.config.experimental.set_memory_growth(physical_devices[0], True)
     self.data_loader = DataLoader()
Exemple #15
0
class TestSVM(unittest.TestCase):
    def setUp(self) -> None:
        physical_devices = tf.config.list_physical_devices('GPU')
        if physical_devices is not None and len(physical_devices) > 0:
            tf.config.experimental.set_memory_growth(physical_devices[0], True)
        self.data_loader = DataLoader()

    def gen_dataset(self, x, y, batch_size):
        x, y = tf.cast(x,
                       dtype=tf.float32), tf.reshape(tf.cast(y,
                                                             dtype=tf.float32),
                                                     shape=(-1, 1))
        return tf.data.Dataset.from_tensor_slices(
            (x, y)).batch(batch_size, drop_remainder=True)

    def test_linear(self):
        (x_train, y_train), (x_test, y_test) = self.data_loader.loadIris1(0.8)
        svm = LinearSVM(num_feature=2)
        svm.compile(optimizer=tf.optimizers.SGD(0.01),
                    loss=svm.loss,
                    metrics=[svm.accu])
        svm.fit(x_train, y_train, batch_size=64, epochs=400, verbose=0)

        results = svm.evaluate(x_test, y_test)
        print("test result: ", results, svm.params())

        self.assertGreater(results[1], 0.9)

        a = float(-svm.W[0] / svm.W[1])
        xx = np.linspace(-2.5, 2.5)
        yy = a * xx - float(svm.b / svm.W[1])

        self.data_loader.plot1(
            (0.0, 10.0),
            (float(-svm.b.numpy() / svm.W.numpy()[1]),
             float(
                 (-svm.b.numpy() - 10 * svm.W.numpy()[0]) / svm.W.numpy()[1])),
            color='black').show()

    def test_gaussian(self):
        def draw(x_vals, y_vals, show=True):
            class1_x = [x[0] for i, x in enumerate(x_vals) if y_vals[i] == 1]
            class1_y = [x[1] for i, x in enumerate(x_vals) if y_vals[i] == 1]
            class2_x = [x[0] for i, x in enumerate(x_vals) if y_vals[i] == -1]
            class2_y = [x[1] for i, x in enumerate(x_vals) if y_vals[i] == -1]
            if show:
                plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
                plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')
                # plt.plot(class3_x, class3_y, 'gv', label='I. virginica')
                plt.title('Gaussian SVM Results on Iris Data')
                plt.xlabel('Pedal Length')
                plt.ylabel('Sepal Width')
                plt.legend(loc='lower right')
                plt.show()
            return class1_x, class1_y, class2_x, class2_y

        (x_vals, y_vals) = sklearn.datasets.make_circles(n_samples=3000,
                                                         factor=.5,
                                                         noise=.1)
        y_vals = np.array([1.0 if y == 1.0 else -1.0 for y in y_vals],
                          dtype=np.float)

        split_ratio = 0.9
        x_train, y_train = x_vals[0:int(len(x_vals) * split_ratio)], y_vals[
            0:int(len(y_vals) * split_ratio)]
        x_test, y_test = x_vals[int(len(x_vals) * split_ratio
                                    ):], y_vals[int(len(y_vals) *
                                                    split_ratio):]
        draw(x_train, y_train)
        draw(x_test, y_test)

        batch_size = 256
        epochs = 300
        svm = GaussianKernelSVM(batch_size=batch_size)
        optimizer = tf.keras.optimizers.SGD(0.001)
        train_dataset = self.gen_dataset(x_train, y_train, batch_size)
        test_dataset = self.gen_dataset(x_test, y_test, 5)

        # train
        def train_step(x_sample, y_sample):
            with tf.GradientTape() as tape:
                pred_kernel = svm(x_sample, x_sample)
                loss = svm.loss(y_sample, pred_kernel)
                accu, _ = svm.accu(y_sample, y_sample, pred_kernel)
            gradients = tape.gradient(
                loss, svm.trainable_variables)  # had to indent this!
            optimizer.apply_gradients(zip(gradients, svm.trainable_variables))
            return loss, accu

        for epoch in range(epochs):
            accus, losses = [], []
            for (batch, (x, y)) in enumerate(train_dataset):
                loss, accu = train_step(x_sample=x, y_sample=y)
                accus.append(accu.numpy())
                losses.append(loss.numpy())
            print("Epoch: {}, accu: {}, loss: {}".format(
                epoch, np.mean(accus), np.mean(losses)))

        # test
        rand_index = np.random.choice(len(x_vals), size=batch_size)
        rand_x = x_vals[rand_index]
        rand_y = tf.convert_to_tensor(np.transpose([y_vals[rand_index]]),
                                      dtype=tf.float32)
        accus = []
        for (batch, (x, y)) in enumerate(test_dataset):
            pred_kernel = svm(x, rand_x)
            accu, _ = svm.accu(y, rand_y, pred_kernel)
            accus.append(accu)
        print("test accuracy: {}".format(np.mean(accus)))
        self.assertGreater(np.mean(accus), 0.8)
        # plot results
        x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
        y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                             np.arange(y_min, y_max, 0.02))
        grid_points = np.c_[xx.ravel(), yy.ravel()]
        output_kernel = svm(grid_points, rand_x)
        _, predictions = svm.accu(None, rand_y, output_kernel)
        grid_predictions = tf.reshape(predictions, xx.shape)

        # Plot points and grid
        class1_x, class1_y, class2_x, class2_y = draw(x_vals, y_vals, False)
        plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
        plt.plot(class1_x, class1_y, 'ro', label='Class 1')
        plt.plot(class2_x, class2_y, 'kx', label='Class -1')
        plt.title('Gaussian SVM Results')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(loc='lower right')
        plt.ylim([-1.5, 1.5])
        plt.xlim([-1.5, 1.5])
        plt.show()

    def test_amsvm(self):
        (x_train, y_train) = self.data_loader.loadIris2(0.8)
        svm = AMSVM(num_classes=3, num_feature=2, c=0.001)
        # optimizer = tf.keras.optimizers.Adam(0.1)
        # train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(50, drop_remainder=True).shuffle(
        #     50)
        # train
        # def train_step(x_sample, y_sample):
        #     with tf.GradientTape() as tape:
        #         output = svm(x_sample)
        #         loss = svm.loss(y_sample, output)
        #         accu = svm.accu(y_sample, output)
        #     gradients = tape.gradient(loss, svm.trainable_variables)  # had to indent this!
        #     optimizer.apply_gradients(zip(gradients, svm.trainable_variables))
        #     return loss, accu
        #
        # for epoch in range(400):
        #     accus, losses = [], []
        #     for (batch, (x, y)) in enumerate(train_dataset):
        #         loss, accu = train_step(x_sample=x, y_sample=y)
        #         accus.append(accu.numpy())
        #         losses.append(loss.numpy())
        #     print("Epoch: {}, accu: {}, loss: {}".format(epoch, np.mean(accus), np.mean(losses)))

        svm.compile(optimizer=tf.optimizers.Adam(0.1),
                    loss=svm.loss,
                    metrics=[svm.accu])
        svm.fit(x_train, y_train, batch_size=50, epochs=100)
                    help='# hidden nodes in generator')
parser.add_argument('--disc_hidden',
                    dest='disc_hidden',
                    type=int,
                    default=80,
                    help='# hidden nodes in discriminator')
parser.add_argument('--log_dir',
                    dest='log_dir',
                    type=str,
                    default='plot_1',
                    help='# log directory ')

args = vars(parser.parse_args())

data_dir = "data/cropped28/"
d = DataLoader(data_dir)
y = np.ones((50000))
X = d.get_original_images()
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

n = args['sample_size']

x_train = x_train[0:n]
x_test = x_test[n:n + n]

noise_factor = 0.1
Exemple #17
0
        'lr': 0.001,
        'batch_size': 64,
        'z_size': 16,
        'max_grad_norm': 5,
        'top_k': 1,
        'word_dropout_p': 0.2,
        'kl_lss_anneal': True,
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        'model_name': 'trained_word_tVAE.model',
        'beta': 1,  # 在kl_loss前面在添加一个超参数,防止kl_loss坍缩
    }


if __name__ == '__main__':

    data_loader = DataLoader(Vocab('europarl_tvae', Level.WORD))

    level = word_level_params()
    level.params['vocab_size'] = data_loader.vocab.vocab_size

    model = tVAE(level.encoder_params, level.decoder_params, level.params)
    if USE_GPU:
        model = model.cuda()

    if model.have_saved_model:
        model.load()
    else:
        # train
        model.fit(data_loader)
        model.save()
Exemple #18
0
from utils.Sampler import Sampler
from utils.plot import plotScatter

from utils import Expressions

from validation.Analyzer import Analyzer
from validation.ClusterValidator import ClusterValidator
from validation.ClassificationValidator import ClassificationValidator

from multiprocessing import Array

if __name__ == '__main__':

    print("Imported modules")

    dataLoader = DataLoader("dataset5")
    dimReducer = DimensionalityReducer()
    analyzer = Analyzer()

    clusVal = ClusterValidator()
    classVal = ClassificationValidator()
    sampler = Sampler()
    print("data loaded")

    #healthy = dataLoader.getData(["healthy"], ["THCA","LUAD"])
    #healthy = sampler.over_sample(healthy)

    start = datetime.now()
    sick = dataLoader.getData(["sick"], ["all"])
    healthy = dataLoader.getData(["healthy"], ["all"])
import math
import random
import time

import torch
from torch import nn
from torch.nn import init

from model.TransE import TransE
from utils.DataLoader import DataLoader
from utils.draw import draw

device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')

loader = DataLoader(device, dataset='FB15k')
loader.load_all()
loader.preprocess(1, init=False)
loader.setup_sampling_map()

entity_dim = 50
load_previous = False

model = TransE(device,
               entity_size=loader.entity_size,
               rel_size=loader.relation_size,
               embed_dim=entity_dim,
               dataset='FB15k',
               margin=5)

# init.uniform_(model.entity_embedding.weight,-6.0/math.sqrt(entity_dim), 6.0/math.sqrt(entity_dim))
# init.uniform_(model.rel_embedding.weight,-6.0/math.sqrt(entity_dim), 6.0/math.sqrt(entity_dim))
Exemple #20
0
import sys
from utils import readjson
from models.SimpleRergression import Linear
from utils.DataLoader import DataLoader
from models.Model import Model

if __name__ == '__main__':
    config = readjson(sys.argv[1])
    linear = Linear(**config['linear'])
    dataloader = DataLoader(**config['dataloader'])
    modal = Model(linear, dataloader, **config['modal'])
    modal.fit()
Exemple #21
0
from tf.CycleGan import CycleGan
from utils.DataLoader import DataLoader
import numpy as np

imageShape=(32,32,3)

dl=DataLoader(path="../dataset",batchSize=10,imageSize=imageShape[0])

cgan=CycleGan(imageShape[0], imageShape[1], imageShape[2], tensorboard=True)
epochs=100
modelSavePath='cgan_saved'
cgan.loadModel(modelSavePath)
for i in range(epochs):
    dataset = dl.getGenerater()
    for data in dataset:
        datasetX = np.array(data[0])
        datasetY = np.array(data[1])
        report=cgan.train_on_batch(datasetX=datasetX,datasetY=datasetY)
        print(report)

    cgan.saveModel(modelSavePath)

Exemple #22
0
def createManagementCompanyData(request):
    logger.info("Creating management company Data")
    dataloader = DataLoader(request.cls.dataFile, env)
    dataloader.deleteManagementAndPropertySetup()
    dataloader.createManagementAndProperty()
    request.cls.testdata = dataloader.getData()
Exemple #23
0
# file that contains embedding for each amino acid
embedding_file = "data/embeddings/embeddings.pkl"

# file that contains protein name and sequence
id2seq_file = "data/processed/"+dataset+"/protein.dictionary.tsv"

# file that contains interaction dataset
interactions_file = "data/processed/"+dataset+"/protein.actions.tsv"


# check the device type: CPU or GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Training on ", device)

# load sequences, and interactions data
dataloader = DataLoader(embedding_file, id2seq_file, interactions_file, max_seq_length=args.max_length)

seq2t = dataloader.seq2t

# number of amino acids in the sequences
# add the padding index
dim = dataloader.dim + 1

# a dictionary that maps protein name to index
protname2index = dataloader.protname2index

# a dictionary that maps index to protein name
ind2protname = {v: k for k, v in protname2index.items()}

# convert the amino acid sequence to numeric tensor
seq_tensor, lengths = dataloader.convert_seq_to_tensor()
Exemple #24
0
from utils.DataLoader import DataLoader
from utils.DimensionalityReducer import DimensionalityReducer
from utils.EA.crossover import *
from utils.EA.mutation import *
from utils.EA.algorithm import ea_for_plot, run
from utils.EA.fitness import fitness
from utils.EA.ea_utils import display_stat_1
from utils.EA.population import phenotype
import utils.EA.config as c

from utils import Expressions

print("import successful")

# %%
dataLoader = DataLoader("dataset4")
dimReducer = DimensionalityReducer()

healthy = dataLoader.getData(["healthy"], ["THCA","LUAD"])
sick = dataLoader.getData(["sick"], ["THCA","LUAD"])
gene_labels = dataLoader.getGeneLabels()

print("got data")

# %%
chromo_size = c.chromo_size
selected_genes = dimReducer.getNormalizedFeatures(sick,healthy,"substract", chromo_size, chromo_size)
print("preselected genes")


#%%
Exemple #25
0
class GenericModel:
    def __init__(self, dirpath):
        self.optimizer = None
        self.learning_rate = None
        self.batch_size = None
        self.metrics = None
        self.loss = None
        self.epochs = None
        self.dirpath = dirpath
        self.tensorboard = self.create_tb_callbacks("./tensorboards/"+self.dirpath+'/'+type(self).__name__)
        self.name_model = os.getcwd() + '/saved_models/'+self.dirpath+'/'+type(self).__name__+".h5"
        self.data_gen = DataLoader(dirpath=dirpath, batch_size=self.batch_size,
                                                        downsample_factor=0)
        self.data_gen.build_data()
        self.output_size = self.data_gen.get_output_size()
        img_w = self.data_gen.img_w
        img_h = self.data_gen.img_h

        if K.image_data_format() == 'channels_first':
            self.input_shape = (1, img_w, img_h)
        else:
            self.input_shape = (img_w, img_h, 1)

    @staticmethod
    def create_input(name, shape, dtype="float32"):
        return Input(name=name, shape=shape, dtype=dtype)
    @staticmethod
    def ctc_loss():
        return {'ctc': lambda y_true, y_pred: y_pred}
    @staticmethod
    def convolution_maxpooling(layer, conv_filters, kernel_size, name_conv, name_pool, pool_size, padding='same',
                               activation='relu',
                               kernel_initializer='he_normal'):
        inner = Conv2D(conv_filters, kernel_size, padding=padding,
                       activation=activation, kernel_initializer=kernel_initializer,
                       name=name_conv)(layer)
        return MaxPooling2D(pool_size=(pool_size, pool_size), name=name_pool)(inner)

    @staticmethod
    def bi_lstm(layer, h_size, name, return_sequences=True, kernel_initializer='he_normal', merge_method="add"):
        lstm_1 = LSTM(h_size, return_sequences=return_sequences, kernel_initializer=kernel_initializer, name=name)(
            layer)
        lstm_1b = LSTM(h_size, return_sequences=return_sequences, go_backwards=True,
                       kernel_initializer=kernel_initializer, name=name + 'b')(layer)
        if merge_method == "add":
            return add([lstm_1, lstm_1b])
        elif merge_method == "concatenate":
            return concatenate([lstm_1, lstm_1b])
        elif merge_method == None:
            return lstm_1, lstm_1b
        else:
            print("You must give a method in order to merge the two directional layers")
            raise Exception

    @staticmethod
    def ctc_lambda_func(args):
        y_pred, labels, input_length, label_length = args
        y_pred = y_pred[:, 2:, :]
        return K.ctc_batch_cost(labels, y_pred, input_length, label_length)

    @staticmethod
    def from_conv_to_lstm_reshape(layer, name="reshape"):
        conv_to_rnn_dims = (layer.get_shape().as_list()[1],
                            (layer.get_shape().as_list()[2]) * layer.get_shape().as_list()[3])

        return Reshape(target_shape=conv_to_rnn_dims, name=name)(layer)

    @staticmethod
    def ctc_layer(y_pred, max_output_len, name_input_length, name_label, name_label_length, name_loss):
        labels = Input(name=name_label, shape=[max_output_len], dtype='float32')
        input_length = Input(name=name_input_length, shape=[1], dtype='int64')
        label_length = Input(name=name_label_length, shape=[1], dtype='int64')
        return labels, input_length, label_length, Lambda(GenericModel.ctc_lambda_func, output_shape=(1,),
                                                          name=name_loss)(
            [y_pred, labels, input_length, label_length])
    @staticmethod
    def create_tb_callbacks(tensorboard_dir):
        return TensorBoard(log_dir=tensorboard_dir, histogram_freq=0, write_graph=True,
                                 write_images=True)

    def build_model(self):
        raise NotImplementedError

    @staticmethod
    def load_model(loss, metrics, opt, name_model):
        model = load_model(name_model, compile=False)
        return model.compile(loss=loss, optimizer=opt, metrics=metrics)

    def initialize_training(self):
        raise NotImplementedError

    def train(self,
              model,
              tensorboard_callback,
              loss,
              metrics,
              nb_epochs,
              save,
              opt,
              lr):

        model.compile(loss=loss, optimizer=opt(lr), metrics=metrics)
        history = model.fit_generator(generator=self.data_gen.next_batch(mode="train", batch_size=self.batch_size),
                                      steps_per_epoch=self.data_gen.n["train"],
                                      epochs=nb_epochs,
                                      callbacks=[tensorboard_callback],
                                      validation_data=self.data_gen.next_batch(mode="test", batch_size=self.batch_size),
                                      validation_steps=self.data_gen.n["test"])
        if save:
            print("saving model into : ")

            if not os.path.exists(os.getcwd() + '/saved_models/'+self.dirpath):
                os.makedirs(os.getcwd() + '/saved_models/'+self.dirpath)
            if os.path.exists(os.getcwd() + '/saved_models/'+self.dirpath+'/'+type(self).__name__+".h5") :
                print("model already saved a long time ago ")
                raise Exception
            model.save(os.getcwd() + '/saved_models/'+self.dirpath+'/'+type(self).__name__+".h5")
        return model, history

    def run_model(self, save=False, load=False):

        try:
            self.initialize_training()
        except Exception:
            print("you need to over-load the method initialize_training in your model ")
            raise Exception

        if self.optimizer is None:
            print("please provide an optimizer")
            raise Exception

        if self.learning_rate is None:
            print("please provide a learning_rate")
            raise Exception

        if self.metrics is None:
            print("please provide metrics")
            raise Exception

        if self.loss is None:
            print("please provide a loss function")
            raise Exception

        if self.epochs is None:
            print("please provide a number of epochs")
            raise Exception




        if load:
            print("Loading model")
            model = GenericModel.load_model(loss=self.loss,
                                            metrics=self.metrics,
                                            opt=self.optimizer,
                                            name_model=self.name_model)
            history = []
        else:
            model = self.build_model()
            with open(os.getcwd() + '/summaries/'+type(self).__name__+'.txt','w') as fh:
                model.summary(print_fn=lambda x: fh.write(x + '\n'))


            model, history = self.train(model=model,
                                        tensorboard_callback=self.tensorboard,
                                        loss=self.loss,
                                        metrics=self.metrics,
                                        nb_epochs=self.epochs,
                                        save=save,
                                        opt=self.optimizer,
                                        lr=self.learning_rate)
            with open(os.getcwd()+'/logs/'+type(self).__name__+'.json','w') as log_file:
                log = {}
                log["name"] = type(self).__name__
                log["batch_size"] = self.batch_size
                log["optimizer"]= self.optimizer.__name__
                log["learning_rate"] = self.learning_rate
                log["epochs"] = self.epochs
                log["nb_train"]= self.data_gen.n["train"]
                log["nb_test"]= self.data_gen.n["test"]
                log["data_dim"]= [int(self.input_shape[0]), int(self.input_shape[1]),int( self.input_shape[2])]
                var_log = {}
                for keys_indicators in history.history.keys():
                    var_log[keys_indicators] = history.history[keys_indicators]
                print(var_log)
                log["train"]={}
                for i in range(self.epochs):
                    log["train"][str(i)]= {}
                    for keys_indicators in history.history.keys():
                        log["train"][str(i)][keys_indicators] = var_log[keys_indicators][i]

                log["max_values"] = {}
                for keys_indicators in history.history.keys():
                    log["max_values"][keys_indicators] = sorted(var_log[keys_indicators])[-1]
                json_string = model.to_json()
                log["summary"]=json_string
                json.dump(log, log_file, indent=4)

        return model, history
    #     myClassifier.runRegularizationParameterAnalysis(first_guess = 0.000001, final_value = 0.002, increment=3)
    myClassifier.fit_model(drop=0, warm_up=False)
    myClassifier.get_report()


if __name__ == "__main__":

    import os
    import numpy as np
    # os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

    file_name = 'Impact5'

    dl = DataLoader(df=file_name,
                    split_size=0.2,
                    should_shuffle=True,
                    is_imbalanced=True,
                    random_state=65,
                    k=5,
                    n_top_features=20,
                    n_samples=None,
                    should_log_inverse=False,
                    modelling_type='c')

    # logistic_regression(file_name, dl)
    tree_classifier(file_name, dl)
    # svm_classifier(file_name, dl)
    # boostigs(file_name, dl)
    # knn_regressor(file_name, dl)
    # dnn_classifier(file_name, dl)
    # random_classifier(file_name, dl)
Exemple #27
0
def createAccountIntelData(request):
    logger.info("Creating Module level data")
    dataloader = DataLoader(request.cls.dataFile, env)
    dataloader.deleteAccountIntelData()
    dataloader.createAccountIntelData()
Exemple #28
0
from datetime import datetime

from utils.DataLoader import DataLoader
from validation.GridSearch import GridSearch

if __name__ == '__main__':

    start = datetime.now()

    print("Imported modules", flush=True)

    dataLoader = DataLoader("dataset4")
    print("data loaded", flush=True)

    healthy = dataLoader.getData(["healthy"], ["THCA", "LUAD"])
    sick = dataLoader.getData(["sick"], ["THCA", "LUAD"])
    data = dataLoader.getData(["sick", "healthy"], ["THCA", "LUAD"])

    grid_search = GridSearch(sick, healthy, data)
    print("got combined data", flush=True)

    table = grid_search.get_table_all_at_once()
    print("table creation done", flush=True)

    grid_search.save_table_to_disk(table, "grid_search_all_at_once_big")
    print("saved table to file", flush=True)

    table = grid_search.get_table_one_vs_rest()
    print("table creation done", flush=True)

    grid_search.save_table_to_disk(table, "grid_search_one_vs_rest_big")
Exemple #29
0
# -*- coding: utf-8 -*-
"""
@Ref: https://www.cvxpy.org/examples/machine_learning/svm.html
@Author: xiezizhe
@Date: 17/2/2020 下午2:45
"""
import cvxpy as cp
from utils.DataLoader import DataLoader
import numpy as np

if __name__ == "__main__":
    data_loader = DataLoader()
    (x_train, y_train), (x_test, y_test) = data_loader.loadIris1(0.8)

    n = 2
    m = len(x_train)

    W = cp.Variable((n, 1))
    b = cp.Variable()
    loss = cp.sum(
        cp.pos(1 - cp.multiply(np.reshape(y_train.numpy(), (m, 1)),
                               x_train.numpy() @ W + b)))
    reg = cp.norm(W, 1)
    lambd = cp.Parameter(nonneg=True)
    prob = cp.Problem(cp.Minimize(loss / m + lambd * reg))
    lambd.value = 0.1
    prob.solve()

    print("{} * w + {}".format(W.value, b.value))
    data_loader.plot1((0.0, 10.0), (float(
        -b.value / W.value[1]), float(
Exemple #30
0
 def __init__(self) -> None:
     self.dl = DataLoader()
     self.train, self.test = pd.DataFrame(), pd.DataFrame()