Exemple #1
0
def eval_feature(fp: GlowProvider, f: str):
        images_0 = fp.get_np({'Blond_Hair': 0}, sample=0.1, sample_max=args['max_sampling'])
        images_1 = fp.get_np({'Blond_Hair': 1}, sample=0.1, sample_max=args['max_sampling'])

        y_0 = np.zeros((len(images_0), 1))
        y_1 = np.ones((len(images_1), 1))

        x = np.concatenate([[*images_0], [*images_1]])
        y = np.append(y_0, y_1)

        # Run Perceptron
        cm = run_perceptron(x, y)
        # show_matrix(cm, f + ': Confusion Matrix - Entire Data')
        print(cm)

        # Cosine
        images_0 = np.average(images_0, axis=0)
        images_1 = np.average(images_1, axis=0)

        cos_sim = dot(images_0, images_1)/(norm(images_0)*norm(images_1))
        print(cos_sim)

        # Run SVM
        # run_svc(x, y)

        return {'feature_name': f, 'cm': cm.tolist(), 'cos': str(cos_sim)}
Exemple #2
0
def eval_features(fp: GlowProvider, result: Path):
    features = fp.get_features()
    results = dict()

    for f, i in zip(features, range(len(features))):
        print(f + ': ' + str(i+1) + '/' + str(len(features)))
        results[f] = eval_feature(fp, f)

    if not result.parent.exists():
        result.parent.mkdir()

    with open(result, 'w') as o:
        json.dump(results, o)
Exemple #3
0
class AvConsumer(multiprocessing.Process):
    def __init__(self, task_queue, result_queue, index_path, np_path):
        multiprocessing.Process.__init__(self)
        self.task_queue = task_queue
        self.result_queue = result_queue
        self.gp = GlowProvider(index=index_path, np_path=np_path)

    def run(self):
        proc_name = self.name
        the_averages = {}
        features = self.gp.get_features()

        while True:
            # {'img': imgs, 'num_job': num_jobs, 'total_num_job': gp_file_total}
            next_task = self.task_queue.get()
            if next_task is None:
                # Poison pill means shutdown
                print('%s: Exiting' % proc_name)
                self.result_queue.put(the_averages)
                self.task_queue.task_done()
                break

            print('{}: {} / {}'.format(proc_name, next_task['num_job'],
                                       next_task['total_num_job']))
            for np_name in next_task['img']:
                np, feature_values = self.gp.get_np_with_features(np_name)

                for f in features:
                    try:
                        the_averages[(f, feature_values[f])]['np'] += np.copy()
                        the_averages[(f, feature_values[f])]['count'] += 1
                    except:
                        the_averages[(f, feature_values[f])] = {}
                        the_averages[(f, feature_values[f])]['np'] = np.copy()
                        the_averages[(f, feature_values[f])]['count'] = 1

            self.task_queue.task_done()
        return
Exemple #4
0
 def __init__(self, task_queue, result_queue, index_path, np_path):
     multiprocessing.Process.__init__(self)
     self.task_queue = task_queue
     self.result_queue = result_queue
     self.gp = GlowProvider(index=index_path, np_path=np_path)
Exemple #5
0
    ap.add_argument('-m',
                    '--max_sampling',
                    required=False,
                    type=float,
                    default=20,
                    help='If sampling, indicate the percentage')
    ap.add_argument('-c',
                    '--chunk_size',
                    required=False,
                    type=int,
                    default=100,
                    help='Chunk size')
    args = vars(ap.parse_args())

    # We load the GlowProvider
    gp = GlowProvider(index=args['index'], np_path=args['np_files'])

    gp_file_names_iterator = chunks(gp.get_image_names(), args['chunk_size'])
    gp_file_total = gp.get_np_num() // args['chunk_size']

    # Establish communication queues
    tasks = multiprocessing.JoinableQueue()
    results = multiprocessing.Queue()

    # Start consumers
    num_consumers = multiprocessing.cpu_count() * 2 - 2
    print('Creating %d consumers' % num_consumers)
    consumers = [
        AvConsumer(tasks,
                   results,
                   index_path=args['index'],
Exemple #6
0
                '--sampling',
                required=False,
                type=float,
                help='If sampling, indicate the percentage')
ap.add_argument('-m',
                '--max_sampling',
                required=False,
                type=float,
                default=20,
                help='If sampling, indicate the percentage')

args = vars(ap.parse_args())

if __name__ == '__main__':

    fp = GlowProvider(index=args['index'], np_path=args['np_files'])
    if False:
        eval_features(fp, args['result'])
    if True:
        result = args['result']
        features = fp.get_features()
        results = dict()

        with Pool(5) as p:
            results = p.map(eval_feature_f, features)

        results = {
            r['feature_name']: {
                'cm': r['cm'],
                'cos': r['cos']
            }
Exemple #7
0
def eval_feature_f(f):
    fp = GlowProvider(index=args['index'], np_path=args['np_files'])

    return eval_feature(fp, f)