def train(): loss = net['cent'] + tf.add_n(net['kl']) / float(N) + net['wd'] global_step = tf.train.get_or_create_global_step() bdr = [int(n_train_batches * (args.n_epochs - 1) * r) for r in [0.5, 0.75]] vals = [1e-2, 1e-3, 1e-4] lr = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), bdr, vals) train_op1 = tf.train.AdamOptimizer(lr).minimize(loss, var_list=net['qpi_vars'], global_step=global_step) train_op2 = tf.train.AdamOptimizer(0.1 * lr).minimize( loss, var_list=net['weights']) train_op = tf.group(train_op1, train_op2) pretrain_saver = tf.train.Saver(net['weights']) saver = tf.train.Saver(net['weights'] + net['qpi_vars']) logfile = open(os.path.join(savedir, 'train.log'), 'w', 0) sess = tf.Session() sess.run(tf.global_variables_initializer()) pretrain_saver.restore(sess, os.path.join(pretraindir, 'model')) train_logger = Accumulator('cent', 'acc') train_to_run = [train_op, net['cent'], net['acc']] test_logger = Accumulator('cent', 'acc') test_to_run = [tnet['cent'], tnet['acc']] for i in range(args.n_epochs): line = 'Epoch %d start, learning rate %f' % (i + 1, sess.run(lr)) print(line) logfile.write(line + '\n') train_logger.clear() start = time.time() for j in range(n_train_batches): bx, by = mnist.train.next_batch(batch_size) train_logger.accum(sess.run(train_to_run, {x: bx, y: by})) train_logger.print_(header='train', epoch=i + 1, time=time.time() - start, logfile=logfile) test_logger.clear() for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) test_logger.accum(sess.run(test_to_run, {x: bx, y: by})) test_logger.print_(header='test', epoch=i + 1, time=time.time() - start, logfile=logfile) line = 'kl: ' + str(sess.run(tnet['kl'])) + '\n' line += 'n_active: ' + str(sess.run(tnet['n_active'])) + '\n' print(line) logfile.write(line + '\n') if (i + 1) % args.save_freq == 0: saver.save(sess, os.path.join(savedir, 'model')) logfile.close() saver.save(sess, os.path.join(savedir, 'model'))
def test(): sess = tf.Session() saver = tf.train.Saver(tnet['weights']) saver.restore(sess, os.path.join(savedir, 'model')) logger = Accumulator('cent', 'acc') to_run = [tnet['cent'], tnet['acc']] for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) logger.accum(sess.run(to_run, {x: bx, y: by})) logger.print_(header='test')
def test(): sess = tf.Session() saver = tf.train.Saver(tnet['weights']+tnet['qpi_vars']) saver.restore(sess, os.path.join(savedir, 'model')) logger = Accumulator('cent', 'acc') to_run = [tnet['cent'], tnet['acc']] for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) logger.accum(sess.run(to_run, {x:bx, y:by})) logger.print_(header='test') line = 'kl: ' + str(sess.run(tnet['kl'])) + '\n' line += 'n_active: ' + str(sess.run(tnet['n_active'])) + '\n' print(line)
def train(): import random loss = -net['elbo'] + net['proto_loss'] * args.lamb global_step = tf.train.get_or_create_global_step() lr_step = args.n_trn_epsd / 3 lr = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [lr_step, lr_step * 2], [1e-3, 1e-3 * 0.5, 1e-3 * 0.5 * 0.5]) train_op = tf.train.AdamOptimizer(lr).minimize(loss, global_step=global_step) saver = tf.train.Saver(net['weights']) logfile = open(os.path.join(savedir, 'train.log'), 'w', 0) sess = tf.Session() sess.run(tf.global_variables_initializer()) # to_run train_logger = Accumulator('elbo', 'proto_loss') train_to_run = [train_op, net['elbo'], net['proto_loss']] for i in range(args.n_trn_epsd): #train feed_dict cidx = random.sample(xrange(len(nxtr)), args.way) fdtr = data_queue(args, xtr, nxtr, cidx) # train train_logger.clear() start = time.time() train_logger.accum(sess.run(train_to_run, feed_dict=fdtr)) if i % 100 == 0: train_logger.print_(header='train', epoch=i + 1, time=time.time() - start, logfile=logfile) line = 'Epoch %d start, learning rate %f' % (i + 1, sess.run(lr)) print('\n' + line) logfile.write('\n' + line + '\n') accu = sess.run(net['acc'], feed_dict=fdtr) print("test accu ", np.mean(accu)) saver.save(sess, os.path.join(savedir, 'model')) logfile.close() saver.save(sess, os.path.join(savedir, 'model'))
def train(): loss = net['cent'] + net['wd'] global_step = tf.train.get_or_create_global_step() lr = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [n_train_batches * args.n_epochs / 2], [1e-4, 1e-5]) train_op = tf.train.AdamOptimizer(lr).minimize(loss, global_step=global_step) saver = tf.train.Saver(net['weights']) logfile = open(os.path.join(savedir, 'train.log'), 'w', 0) sess = tf.Session() sess.run(tf.global_variables_initializer()) train_logger = Accumulator('cent', 'acc') train_to_run = [train_op, net['cent'], net['acc']] test_logger = Accumulator('cent', 'acc') test_to_run = [tnet['cent'], tnet['acc']] for i in range(args.n_epochs): line = 'Epoch %d start, learning rate %f' % (i + 1, sess.run(lr)) print(line) logfile.write(line + '\n') train_logger.clear() start = time.time() for j in range(n_train_batches): bx, by = mnist.train.next_batch(batch_size) train_logger.accum(sess.run(train_to_run, {x: bx, y: by})) train_logger.print_(header='train', epoch=i + 1, time=time.time() - start, logfile=logfile) test_logger.clear() for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) test_logger.accum(sess.run(test_to_run, {x: bx, y: by})) test_logger.print_(header='test', epoch=i + 1, time=time.time() - start, logfile=logfile) print() logfile.write('\n') if (i + 1) % args.save_freq == 0: saver.save(sess, os.path.join(savedir, 'model')) logfile.close() saver.save(sess, os.path.join(savedir, 'model'))
def test(): sess = tf.Session() saver = tf.train.Saver(tnet['weights']+tnet['qpi_vars']+tnet['pzx_vars']) saver.restore(sess, os.path.join(savedir, 'model')) logger = Accumulator('cent', 'acc') to_run = [tnet['cent'], tnet['acc']] + tnet['n_active'] np_n_active = [0]*n_drop for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) res = sess.run(to_run, {x:bx, y:by}) logger.accum(res[:-n_drop]) np_n_active = [a + b for a, b in zip(np_n_active, res[-n_drop:])] np_n_active = [int(a/n_test_batches) for a in np_n_active] logger.print_(header='test') line = 'kl: ' + str(sess.run(tnet['kl'])) + '\n' line += 'n_active:' + str(np_n_active) + '\n' print(line)
def test(): import random sess = tf.Session() saver = tf.train.Saver(tnet['weights']) saver.restore(sess, os.path.join(savedir, 'model')) test_logger = Accumulator('elbo', 'proto_loss', 'acc') test_to_run = [tnet['elbo'], tnet['proto_loss'], tnet['acc']] test_logger.clear() for i in range(args.n_tst_epsd): #train feed_dict cidx = random.sample(xrange(len(nxte)), args.way) fdte = data_queue(args, xte, nxte, cidx) # test test_logger.accum(sess.run(test_to_run, feed_dict=fdte)) if (i + 1) % 100 == 0: test_logger.print_(header='test', epoch=i + 1)
def train(): loss = net['cent'] + tf.add_n(net['kl']) / float(N) + net['wd'] global_step = tf.train.get_or_create_global_step() bdr = [int(n_train_batches * (args.n_epochs - 1) * r) for r in [0.5, 0.75]] vals = [1e-2, 1e-3, 1e-4] lr = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), bdr, vals) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op1 = tf.train.AdamOptimizer(lr).minimize( loss, var_list=net['pzx_vars'], global_step=global_step) train_op2 = tf.train.AdamOptimizer(0.1 * lr).minimize( loss, var_list=net['weights']) train_op = tf.group(train_op1, train_op2) pretrain_saver = tf.train.Saver(net['weights'] + net['qpi_vars']) saver = tf.train.Saver(net['weights'] + net['qpi_vars'] + net['pzx_vars']) logfile = open(os.path.join(savedir, 'train.log'), 'w', 0) sess = tf.Session() sess.run(tf.global_variables_initializer()) pretrain_saver.restore(sess, os.path.join(pretraindir, 'model')) train_logger = Accumulator('cent', 'acc') train_to_run = [train_op, net['cent'], net['acc']] test_logger = Accumulator('cent', 'acc') test_to_run = [tnet['cent'], tnet['acc']] + tnet['n_active'] for i in range(args.n_epochs): line = 'Epoch %d start, learning rate %f' % (i + 1, sess.run(lr)) print(line) logfile.write(line + '\n') train_logger.clear() start = time.time() for j in range(n_train_batches): bx, by = mnist.train.next_batch(batch_size) train_logger.accum(sess.run(train_to_run, {x: bx, y: by})) train_logger.print_(header='train', epoch=i + 1, time=time.time() - start, logfile=logfile) test_logger.clear() np_n_active = [0] * n_drop for j in range(n_test_batches): bx, by = mnist.test.next_batch(batch_size) res = sess.run(test_to_run, {x: bx, y: by}) test_logger.accum(res[:-n_drop]) np_n_active = [a + b for a, b in zip(np_n_active, res[-n_drop:])] test_logger.print_(header='test', epoch=i + 1, time=time.time() - start, logfile=logfile) np_n_active = [int(a / n_test_batches) for a in np_n_active] line = 'kl: ' + str(sess.run(tnet['kl'])) + '\n' line += 'n_active: ' + str(np_n_active) + '\n' print(line) logfile.write(line + '\n') if (i + 1) % args.save_freq == 0: saver.save(sess, os.path.join(savedir, 'model')) if (i + 1) % args.vis_freq == 0: fig = _visualize(sess) fig.savefig(os.path.join(figdir, 'epoch%d.png' % (i + 1)), dpi=200) saver.save(sess, os.path.join(savedir, 'model')) logfile.close()