Exemple #1
0
def main(args, hp):
    model = VoiceFilter(hp).cuda()
    chkpt_model = torch.load(args.checkpoint_path)['model']
    model.load_state_dict(chkpt_model)
    model.eval()

    embedder = SpeechEmbedder(hp).cuda()
    chkpt_embed = torch.load(args.embedder_path)
    embedder.load_state_dict(chkpt_embed)
    embedder.eval()

    audio = Audio(hp)
    dvec_wav, _ = librosa.load(args.reference_file, sr=16000)
    dvec_mel = audio.get_mel(dvec_wav)
    dvec_mel = torch.from_numpy(dvec_mel).float().cuda()
    dvec = embedder(dvec_mel)
    dvec = dvec.unsqueeze(0)

    mixed_wav, _ = librosa.load(args.mixed_file, sr=16000)
    mag, phase = audio.wav2spec(mixed_wav)
    mag = torch.from_numpy(mag).float().cuda()

    mag = mag.unsqueeze(0)
    mask = model(mag, dvec)
    est_mag = mag * mask

    est_mag = est_mag[0].cpu().detach().numpy()
    est_wav = audio.spec2wav(est_mag, phase)

    os.makedirs(args.out_dir, exist_ok=True)
    out_path = os.path.join(args.out_dir, 'result.wav')
    librosa.output.write_wav(out_path, est_wav, sr=16000)
Exemple #2
0
def main(args, hp):
    with torch.no_grad():
        model = VoiceFilter(hp).cuda()
        chkpt_model = torch.load(args.checkpoint_path)['model']
        model.load_state_dict(chkpt_model)
        model.eval()

        embedder = SpeechEmbedder(hp).cuda()
        chkpt_embed = torch.load(args.embedder_path)
        embedder.load_state_dict(chkpt_embed)
        embedder.eval()

        audio = Audio(hp)
        ref_wav, _ = librosa.load(args.reference_file, sr=16000)
        ref_mel = audio.get_mel(ref_wav)
        ref_mel = torch.from_numpy(ref_mel).float().cuda()
        dvec = embedder(ref_mel)
        dvec = dvec.unsqueeze(0)

        mixed_wav, _ = librosa.load(args.mixed_file, sr=16000)
        mixed_mag, mixed_phase = audio.wav2spec(mixed_wav)
        mixed_mag = torch.from_numpy(mixed_mag).float().cuda()

        mixed_mag = mixed_mag.unsqueeze(0)
        shadow_mag = model(mixed_mag, dvec)

        shadow_mag = shadow_mag[0].cpu().detach().numpy()
        recorded_mag = tensor_normalize(mixed_mag + shadow_mag)
        recorded_mag = recorded_mag[0].cpu().detach().numpy()
        recorded_wav = audio.spec2wav(recorded_mag, mixed_mag)

        os.makedirs(args.out_dir, exist_ok=True)
        out_path = os.path.join(args.out_dir, 'result.wav')
        librosa.output.write_wav(out_path, recorded_wav, sr=16000)
Exemple #3
0
def main(args):
    args = {
        "config": 'config/config.yaml',
        "embedder_path": 'model/embedder.pt',
        "checkpoint_path": 'enhance_my_voice/chkpt_201000.pt',
        "mixed_file": 'utils/speakerA.wav',
        "reference_file": 'utils/speakerA.wav',
        "out_dir": 'output',
    }

    hp = HParam(args['config'])

    with torch.no_grad():
        model = VoiceFilter(hp).cuda()
        chkpt_model = torch.load(args['checkpoint_path'])['model']
        model.load_state_dict(chkpt_model)
        model.eval()

        embedder = SpeechEmbedder(hp).cuda()
        chkpt_embed = torch.load(args['embedder_path'])
        embedder.load_state_dict(chkpt_embed)
        embedder.eval()

        audio = Audio(hp)
        dvec_wav, _ = librosa.load(args['reference_file'], sr=16000)
        dvec_mel = audio.get_mel(dvec_wav)
        dvec_mel = torch.from_numpy(dvec_mel).float().cuda()
        dvec = embedder(dvec_mel)
        dvec = dvec.unsqueeze(0)

        mixed_wav, _ = librosa.load(args['mixed_file'], sr=16000)
        mag, phase = audio.wav2spec(mixed_wav)
        mag = torch.from_numpy(mag).float().cuda()

        mag = mag.unsqueeze(0)
        mask = model(mag, dvec)
        est_mag = mag * mask

        est_mag = est_mag[0].cpu().detach().numpy()
        # est_wav = audio.spec2wav(est_mag, phase)

        # os.makedirs(args['out_dir'], exist_ok=True)
        # out_path = os.path.join(args['out_dir'], 'result.wav')
        # librosa.output.write_wav(out_path, est_wav, sr=16000)
        return audio.spec2wav(est_mag, phase)
Exemple #4
0
def main(args, hp):
    with open('out1.txt') as f:
        for line in f:
            res = line.split('\t')
            with torch.no_grad():
                model = VoiceFilter(hp)
                chkpt_model = torch.load(args.checkpoint_path, map_location='cpu')['model']
                model.load_state_dict(chkpt_model)
                model.eval()

                embedder = SpeechEmbedder(hp)
                chkpt_embed = torch.load(args.embedder_path, map_location='cpu')
                embedder.load_state_dict(chkpt_embed)
                embedder.eval()

                audio = Audio(hp)
                dvec_wav, _ = librosa.load(res[1], sr=16000)
                dvec_mel = audio.get_mel(dvec_wav)
                dvec_mel = torch.from_numpy(dvec_mel).float()
                dvec = embedder(dvec_mel)
                dvec = dvec.unsqueeze(0)

                mixed_wav, _ = librosa.load(res[0], sr=16000)
                mag, phase = audio.wav2spec(mixed_wav)
                mag = torch.from_numpy(mag).float()

                mag = mag.unsqueeze(0)
                mask = model(mag, dvec)
                est_mag = mag * mask

                est_mag = est_mag[0].cpu().detach().numpy()
                est_wav = audio.spec2wav(est_mag, phase)

                os.makedirs('/root/voicefilter/res', exist_ok=True)
                out_path = os.path.join('/root/voicefilter/res', f'{res[2]}')
                librosa.output.write_wav(out_path, est_wav, sr=16000)
            mixed_wav, _ = librosa.load(mixed_wav_path, sr=16000)
            mixed_mag, mixed_phase = audio.wav2spec(mixed_wav)
            mixed_mag = torch.from_numpy(mixed_mag).float().cuda()

            mixed_mag = mixed_mag.unsqueeze(0)

            shadow_mag = model(mixed_mag, dvec)
            # shadow_mag.size() = [1, 301, 601]

            recorded_mag = tensor_normalize(mixed_mag + shadow_mag)
            recorded_mag = recorded_mag[0].cpu().detach().numpy()
            mixed_mag = mixed_mag[0].cpu().detach().numpy()

            shadow_mag = shadow_mag[0].cpu().detach().numpy()
            shadow_wav = audio.spec2wav(shadow_mag, mixed_phase)

            # scale is frequency pass to time domain, used on wav signal normalization
            recorded_wav1 = audio.spec2wav(recorded_mag, mixed_phase)  # path 1

            # mixed_Wav_path = '/data/our_dataset/test/13/babble/000001-mixed.wav'
            hide1 = mixed_wav_path[:-9] + 'hide1.wav'
            hide2 = mixed_wav_path[:-9] + 'hide2.wav'
            # purified3 = os.path.join(args.out_dir, 'result3.wav')

            # original mixed wav and expected_focused wav are not PCM, cannot be read by google cloud
            wavio.write(hide1, recorded_wav1, 16000,
                        sampwidth=2)  # frequency +
            wavio.write(hide2, shadow_wav, 16000, sampwidth=2)  # est noise
            # wavio.write(purified3, enhanced_wav, 16000, sampwidth=2)  # mix + est noise