def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        coco_tag = ['AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ]',
                    'AP @[ IoU=0.50      | area=   all | maxDets=100 ]',
                    'AP @[ IoU=0.75      | area=   all | maxDets=100 ]',
                    'AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ]',
                    'AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ]',
                    'AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ]',
                    'AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ]',
                    'AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ]',
                    'AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ]',
                    'AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ]',
                    'AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ]',
                    'AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ]']
        coco_eval_stats = evaluate_coco(self.generator, self.model, self.threshold)
        if coco_eval_stats is not None and self.tensorboard is not None and self.tensorboard.writer is not None:
            import tensorflow as tf
            summary = tf.Summary()
            for index, result in enumerate(coco_eval_stats):
                summary_value = summary.value.add()
                summary_value.simple_value = result
                summary_value.tag = '{}. {}'.format(index + 1, coco_tag[index])
                self.tensorboard.writer.add_summary(summary, epoch)
                logs[coco_tag[index]] = result
Exemple #2
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # create the model
    print('Loading model, this may take a second...')
    model = keras.models.load_model(args.model, custom_objects=custom_objects)

    # create a generator for testing data
    test_generator = CocoGenerator(args.coco_path, args.set)

    evaluate_coco(test_generator, model, args.score_threshold)