batch_input = batch[:-1] # forward cls_predict = model.forward(*batch_input) batch_acc, batch_eq_num = evaluate_acc(cls_predict, cls_truth) batch_num = cls_truth.shape[0] eq_num += batch_eq_num all_num += batch_num acc = eq_num / all_num return acc if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--in', dest='in_infix', type=str, default='default', help='input path infix') parser.add_argument('--out', type=str, default='default', help='output path infix') parser.add_argument('--slot', type=str, default='directed_by', help='output path infix') parser.add_argument('--train', action='store_true', default=False, help='enable train step') parser.add_argument('--test', action='store_true', default=False, help='enable test step') parser.add_argument('--gpuid', type=int, default=None, help='gpuid') args = parser.parse_args() in_infix = args.in_infix + '/' + args.slot out_infix = args.out + '/' + args.slot init_logging(out_infix=out_infix) main('config/game_config.yaml', in_infix=in_infix, out_infix=out_infix, slot=args.slot, is_train=args.train, is_test=args.test, gpuid=args.gpuid)
type=str, default='config.yaml', help='config path') parser.add_argument('-in', dest='in_infix', type=str, default='default', help='input data_path infix') parser.add_argument('-out', type=str, default='default', help='output data_path infix') parser.add_argument('-train', action='store_true', default=False, help='enable train step') parser.add_argument('-test', action='store_true', default=False, help='enable test step') parser.add_argument('-gpuid', type=int, default=None, help='gpuid') args = parser.parse_args() init_logging(out_infix=args.out) main(args.config, args.in_infix, args.out, is_train=args.train, is_test=args.test, gpuid=args.gpuid)
__author__ = "Han" __email__ = "*****@*****.**" import os import sys sys.path.append(os.getcwd()) import argparse import torch import logging from collections import OrderedDict from models import * from utils.config import init_logging, read_config init_logging() logger = logging.getLogger(__name__) def transform(pre_model_path, tar_model_path, cur_model): pre_weight = torch.load(pre_model_path, map_location=lambda storage, loc: storage) pre_keys = pre_weight.keys() pre_value = pre_weight.values() cur_weight = cur_model.state_dict() del cur_weight['model.embedding_layer.weight'] cur_keys = cur_weight.keys() assert len(pre_keys) == len(cur_keys) logging.info('pre-keys: ' + str(pre_keys))