def data_preprocessing(self): if os.path.exists(self.parameters['dataset_dirname']) is True: pass else: print ("Input_Data 폴더명과 위치를 다시 확인하고 프로그램을 수행하세요") exit(-1) self.set_answer_info() self.set_docpath_info() # Training Set TF_IDF_Feature_Matrix, target_idx_list = self.read_student_feature(self.parameters['dataset_dirname']) train_idx, train_target_idx = self.make_data(target_idx_list, TF_IDF_Feature_Matrix, False) # A list of tuples consisting of (target label, tf_idf_feature vector) self.train_data = data_helpers.batch_construction(train_target_idx, train_idx) # Validation Set Val_TF_IDF_Feature_Matrix, Val_target_idx_list = self.read_student_feature(self.parameters['dataset_validation']) val_idx, val_target_idx = self.make_data(Val_target_idx_list, Val_TF_IDF_Feature_Matrix, True) # A list of tuples consisting of (target label, tf_idf_feature vector) self.valid_data = data_helpers.batch_construction(val_target_idx, val_idx) print ("") print (" >> Implementation1 is complete!!") print (" >> Do the next task, Implementation2.") print ("")
def test(): print(" >> Loading preprocessing data...", "\n") parameters, data_info = load_preprocessing() print(" >> Loading Test Dataset...", "\n") TF_IDF_Feature_Matrix, target_idx_list = data_info.read_student_feature(parameters['dataset_testset']) test_idx, test_target_idx = data_info.make_data(target_idx_list, TF_IDF_Feature_Matrix, is_test = True) test_data = data_helpers.batch_construction(test_target_idx, test_idx) session_conf = tf.ConfigProto() session_conf.gpu_options.allow_growth = True with tf.Session(config=session_conf) as sess: Model = load_model(sess, parameters, data_info) test_input_indices, test_target_indices, test_target_origin =\ data_helpers.get_minibatch(dataset=test_data,\ minibatch_seq=np.arange(len(test_data)),\ is_test = True) feed_dict = { Model.X: test_input_indices,\ Model.Y: test_target_indices } test_logits = sess.run([Model.softmax_output], feed_dict=feed_dict) # Save the output of softmax layer np.savetxt(fname=parameters['output_path'], X=test_logits[0], \ fmt='%.10f', delimiter = '\t') np.savetxt(fname='answer.txt', X=test_target_indices, fmt='%d') print(" >> End of Test...") print(" >> Check 'output.txt' and 'answer.txt' file...") print("")