Exemple #1
0
    def data_preprocessing(self):
        if os.path.exists(self.parameters['dataset_dirname']) is True:
            pass
        else:
            print ("Input_Data 폴더명과 위치를 다시 확인하고 프로그램을 수행하세요")
            exit(-1)

        self.set_answer_info()
        self.set_docpath_info()

        # Training Set
        TF_IDF_Feature_Matrix, target_idx_list = self.read_student_feature(self.parameters['dataset_dirname'])

        train_idx, train_target_idx = self.make_data(target_idx_list, TF_IDF_Feature_Matrix, False)

        # A list of tuples consisting of (target label, tf_idf_feature vector)
        self.train_data = data_helpers.batch_construction(train_target_idx, train_idx)

        # Validation Set
        Val_TF_IDF_Feature_Matrix, Val_target_idx_list = self.read_student_feature(self.parameters['dataset_validation'])

        val_idx, val_target_idx = self.make_data(Val_target_idx_list, Val_TF_IDF_Feature_Matrix, True)
        # A list of tuples consisting of (target label, tf_idf_feature vector)
        self.valid_data = data_helpers.batch_construction(val_target_idx, val_idx)


        print ("")
        print ("  >> Implementation1 is complete!!")
        print ("  >> Do the next task, Implementation2.")
        print ("")
Exemple #2
0
def test():
    print("  >> Loading preprocessing data...", "\n")
    parameters, data_info = load_preprocessing()

    print("  >> Loading Test Dataset...", "\n")
    TF_IDF_Feature_Matrix, target_idx_list = data_info.read_student_feature(parameters['dataset_testset'])
    test_idx, test_target_idx = data_info.make_data(target_idx_list, TF_IDF_Feature_Matrix, is_test = True)
    test_data = data_helpers.batch_construction(test_target_idx, test_idx)

    session_conf = tf.ConfigProto()
    session_conf.gpu_options.allow_growth = True
    with tf.Session(config=session_conf) as sess:
        Model = load_model(sess, parameters, data_info)

        test_input_indices, test_target_indices, test_target_origin =\
            data_helpers.get_minibatch(dataset=test_data,\
                                       minibatch_seq=np.arange(len(test_data)),\
                                       is_test = True)

        feed_dict = {
            Model.X: test_input_indices,\
            Model.Y: test_target_indices
        }

        test_logits = sess.run([Model.softmax_output], feed_dict=feed_dict)

        # Save the output of softmax layer
        np.savetxt(fname=parameters['output_path'], X=test_logits[0], \
                   fmt='%.10f', delimiter = '\t')

        np.savetxt(fname='answer.txt', X=test_target_indices, fmt='%d')

        print("  >> End of Test...")
        print("  >> Check 'output.txt' and 'answer.txt' file...")
        print("")