def main(): data = datasets.load_digits() X = data.data y = data.target digit1 = 1 digit2 = 8 idx = np.append(np.where(y == digit1)[0], np.where(y == digit2)[0]) y = data.target[idx] # Change labels to {-1, 1} y[y == digit1] = -1 y[y == digit2] = 1 X = data.data[idx] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # Adaboost classification with 5 weak classifiers clf = Adaboost(n_clf=5) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print ("Accuracy:", accuracy) # Reduce dimensions to 2d using pca and plot the results Plot().plot_in_2d(X_test, y_pred, title="Adaboost", accuracy=accuracy)
def runWorker(): # import DistML.DistML as worker if not ps.isWorker(): return from model.logistic_regression import LogisticRegression # TODO split data for diff worker data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y == 1] = 0 y[y == 2] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) clf = LogisticRegression(gradient_descent=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy)
def main(): #load data data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y == 1] = 0 y[y == 2] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, seed=1) clf = LogisticRegression(gradient_descent=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: ", accuracy) #Redurce dimense to two using Pca and plot the result """PCA降维,将结果画出""" Plot.plot_in_2d(X_train, y_pred, title="LogisticRegression", accuracy=accuracy)
def main(): data = datasets.load_digits() x = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) clf = NaiveBayes() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy :", accuracy)
def main(): data = datasets.load_iris() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) clf = KNN(k=5) y_pred = clf.predict(X_test, X_train, y_train) accuracy = accuracy_score(y_test, y_pred) print("Accuracy: ", accuracy) # Reduce dimensions to 2d using pca and plot the results Plot().plot_in_2d(X_test, y_pred, title="K Nearest Neighbors", accuracy=accuracy, legend_labels=data.target_names)
def main(): data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y==1] = -1 y[y==2] = 1 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33) clf = SuperVectorMachine(kernel=ploynomial_kernal,power=4,coef=1) clf.fit(X_train,y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test,y_pred) print("Accuracy :" ,accuracy) print(X_test.shape)
def main(): print("-- Gradient Boosting Classification --") data = datasets.load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) clf = GradientBoostingClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="Gradient Boosting", accuracy=accuracy, legend_labels=data.target_names)
def acc(self, y, p): return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))