args.prime,
            style,
            real_text,
            args.is_map,
            args.batch_size,
        )
        if args.is_map:
            plt.imshow(phi, cmap="viridis", aspect="auto")
            plt.colorbar()
            plt.xlabel("time steps")
            plt.yticks(np.arange(phi.shape[0]),
                       list(ytext),
                       rotation="horizontal")
            plt.margins(0.2)
            plt.subplots_adjust(bottom=0.15)
            plt.savefig("heat_map.png")
            plt.close()

    # denormalize the generated offsets using train set mean and std
    # if args.prime:
    #     print("data denormalization...")
    #     gen_seq = data_denormalization(mean, std, gen_seq)
    # else:
    gen_seq = data_denormalization(Global.train_mean, Global.train_std,
                                   gen_seq)

    # plot the sequence
    for i in range(args.batch_size):
        plot_stroke(gen_seq[i],
                    save_name=args.save_path / ("gen_seq_" + str(i) + ".png"))
def train(model, train_loader, valid_loader, batch_size, n_epochs, lr,
          patience, step_size, device, model_type, save_path):
    model_path = save_path + "best_model_" + model_type + ".pt"
    model = model.to(device)

    optimizer = optim.Adam(model.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=step_size, gamma=0.1)

    train_losses = []
    valid_losses = []
    best_loss = math.inf
    best_epoch = 0
    k = 0
    for epoch in range(n_epochs):
        print("training.....")
        train_loss = train_epoch(model, optimizer, epoch, train_loader, device,
                                 model_type)

        print("validation....")
        valid_loss = validation(model, valid_loader, device, epoch, model_type)

        train_losses.append(train_loss)
        valid_losses.append(valid_loss)

        print('Epoch {}: Train: avg. loss: {:.3f}'.format(
            epoch + 1, train_loss))
        print('Epoch {}: Valid: avg. loss: {:.3f}'.format(
            epoch + 1, valid_loss))

        if step_size != -1:
            scheduler.step()

        if valid_loss < best_loss:
            best_loss = valid_loss
            best_epoch = epoch + 1
            print('Saving best model at epoch {}'.format(epoch + 1))
            torch.save(model.state_dict(), model_path)
            if model_type == "prediction":
                gen_seq = generate_unconditional_seq(model_path,
                                                     700,
                                                     device,
                                                     bias=10.0,
                                                     style=None,
                                                     prime=False)

            else:
                gen_seq, phi = generate_conditional_sequence(
                    model_path,
                    "Hello world!",
                    device,
                    train_loader.dataset.char_to_id,
                    train_loader.dataset.idx_to_char,
                    bias=10.,
                    prime=False,
                    prime_seq=None,
                    real_text=None)

                plt.imshow(phi, cmap='viridis', aspect='auto')
                plt.colorbar()
                plt.xlabel("time steps")
                plt.yticks(np.arange(phi.shape[1]),
                           list("Hello world!  "),
                           rotation='horizontal')
                plt.margins(0.2)
                plt.subplots_adjust(bottom=0.15)
                plt.savefig(save_path + "heat_map" + str(best_epoch) + ".png")
                plt.close()
            # denormalize the generated offsets using train set mean and std
            gen_seq = data_denormalization(Global.train_mean, Global.train_std,
                                           gen_seq)

            # plot the sequence
            plot_stroke(gen_seq[0],
                        save_name=save_path + model_type + "_seq_" +
                        str(best_epoch) + ".png")
            k = 0
        elif k > patience:
            print("Best model was saved at epoch: {}".format(best_epoch))
            print("Early stopping at epoch {}".format(epoch))
            break
        else:
            k += 1
Exemple #3
0
def generate_handwriting(
    char_seq="hello world",
    real_text="",
    style_path="../app/static/mobile/style.npy",
    save_path="",
    app_path="",
    n_samples=1,
    bias=10.0,
):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    data_path = os.path.join(app_path, "../data/")
    model_path = os.path.join(app_path,
                              "../results/synthesis/best_model_synthesis.pt")
    # seed = 194
    # print("seed:",seed)
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # print(np.random.get_state())

    train_dataset = HandwritingDataset(data_path, split="train", text_req=True)

    prime = True
    is_map = False
    style = np.load(style_path, allow_pickle=True,
                    encoding="bytes").astype(np.float32)
    # plot the sequence
    # plot_stroke(style, os.path.join(save_path, "original.png"))

    print("Priming text: ", real_text)
    mean, std, style = data_normalization(style)
    style = torch.from_numpy(style).unsqueeze(0).to(device)
    # style = valid_offset_normalization(Global.train_mean, Global.train_std, style[None,:,:])
    # style = torch.from_numpy(style).to(device)
    print("Priming sequence size: ", style.shape)
    ytext = real_text + " " + char_seq + "  "

    for i in range(n_samples):
        gen_seq, phi = generate_conditional_sequence(
            model_path,
            char_seq,
            device,
            train_dataset.char_to_id,
            train_dataset.idx_to_char,
            bias,
            prime,
            style,
            real_text,
            is_map,
        )
        if is_map:
            plt.imshow(phi, cmap="viridis", aspect="auto")
            plt.colorbar()
            plt.xlabel("time steps")
            plt.yticks(np.arange(phi.shape[0]),
                       list(ytext),
                       rotation="horizontal")
            plt.margins(0.2)
            plt.subplots_adjust(bottom=0.15)
            plt.show()

        # denormalize the generated offsets using train set mean and std
        print("data denormalization...")
        end = style.shape[1]
        # gen_seq[:,:end] = data_denormalization(mean, std, gen_seq[:, :end])
        # gen_seq[:,end:] = data_denormalization(Global.train_mean, Global.train_std, gen_seq[:,end:])
        gen_seq = data_denormalization(Global.train_mean, Global.train_std,
                                       gen_seq)
        # plot the sequence
        print(gen_seq.shape)
        # plot_stroke(gen_seq[0, :end])
        plot_stroke(gen_seq[0],
                    os.path.join(save_path, "gen_stroke_" + str(i) + ".png"))
        print(save_path)
Exemple #4
0
def train(model, train_loader, valid_loader, batch_size, n_epochs, lr,
          patience, step_size, device, model_type, save_path):
    model_path = save_path + "model_" + model_type + ".pt"
    model = model.to(device)

    if os.path.isfile(model_path):
        model.load_state_dict(torch.load(model_path))
        print(f"[ACTION] Loaded model weights from '{model_path}'")
    else:
        print("[INFO] No saved weights found, training from scratch.")
    optimizer = optim.Adam(model.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=step_size, gamma=0.1)

    train_losses = []
    valid_losses = []
    best_loss = math.inf
    best_epoch = 0
    k = 0
    for epoch in range(n_epochs):
        start_time = time.time()
        print(f"[Epoch {epoch + 1}/{n_epochs}]")
        print("[INFO] Training Model.....")
        train_loss = train_epoch(model, optimizer, epoch, train_loader, device,
                                 model_type)

        print("[INFO] Validating Model....")
        valid_loss = validation(model, valid_loader, device, epoch, model_type)

        train_losses.append(train_loss)
        valid_losses.append(valid_loss)

        print(f"[RESULT] Epoch {epoch + 1}/{n_epochs}"
              f"\tTrain loss: {train_loss:.3f}\tVal loss: {valid_loss:.3f}")

        if step_size != -1:
            scheduler.step()

        if valid_loss < best_loss:
            best_loss = valid_loss
            best_epoch = epoch + 1
            print("[SAVE] Saving weights at epoch: {}".format(epoch + 1))
            torch.save(model.state_dict(), model_path)
            if model_type == "prediction":
                gen_seq = generate_unconditional_seq(model_path,
                                                     700,
                                                     device,
                                                     bias=10.0,
                                                     style=None,
                                                     prime=False)

            else:
                gen_seq = generate_conditional_sequence(
                    model_path,
                    "Hello world!",
                    device,
                    train_loader.dataset.char_to_id,
                    train_loader.dataset.idx_to_char,
                    bias=10.0,
                    prime=False,
                    prime_seq=None,
                    real_text=None)

            # denormalize the generated offsets using train set mean and std
            gen_seq = data_denormalization(Global.train_mean, Global.train_std,
                                           gen_seq)

            # plot the sequence
            plot_stroke(
                gen_seq[0],
                save_name=save_path + model_type + "_seq_" + str(best_epoch) +
                ".png",
            )
            k = 0
        elif k > patience:
            print("Best model was saved at epoch: {}".format(best_epoch))
            print("Early stopping at epoch {}".format(epoch))
            break
        else:
            k += 1
        total_time_taken = time.time() - start_time
        print('Time taken per epoch: {:.2f}s\n'.format(total_time_taken))