Exemple #1
0
def test(model, path):

    ##### put ur data_path of TestDataSet/Kvasir here #####
    data_path = path
    #####                                             #####

    model.eval()
    image_root = '{}/images/'.format(data_path)
    gt_root = '{}/masks/'.format(data_path)
    test_loader = test_dataset(image_root, gt_root, 352)
    b = 0.0
    for i in range(100):
        image, gt, name = test_loader.load_data()
        gt = np.asarray(gt, np.float32)
        gt /= (gt.max() + 1e-8)
        image = image.cuda()

        res = model(image)
        res = F.upsample(res,
                         size=gt.shape,
                         mode='bilinear',
                         align_corners=False)
        res = res.sigmoid().data.cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)

        input = res
        target = np.array(gt)
        N = gt.shape
        smooth = 1
        input_flat = np.reshape(input, (-1))
        target_flat = np.reshape(target, (-1))

        intersection = (input_flat * target_flat)

        loss = (2 * intersection.sum() + smooth) / (input.sum() +
                                                    target.sum() + smooth)

        a = '{:.4f}'.format(loss)
        a = float(a)
        b = b + a

    return b / 100
Exemple #2
0
for _data_name in [
        'CVC-300', 'CVC-ClinicDB', 'Kvasir', 'CVC-ColonDB', 'ETIS-LaribPolypDB'
]:
    data_path = './data/TestDataset/{}/'.format(_data_name)
    save_path = './results/PraNet/{}/'.format(_data_name)
    opt = parser.parse_args()
    model = PraNet()
    model.load_state_dict(torch.load(opt.pth_path))
    model.cuda()
    model.eval()

    os.makedirs(save_path, exist_ok=True)
    image_root = '{}/images/'.format(data_path)
    gt_root = '{}/masks/'.format(data_path)
    test_loader = test_dataset(image_root, gt_root, opt.testsize)

    for i in range(test_loader.size):
        image, gt, name = test_loader.load_data()
        gt = np.asarray(gt, np.float32)
        gt /= (gt.max() + 1e-8)
        image = image.cuda()

        res5, res4, res3, res2 = model(image)
        res = res2
        res = F.upsample(res,
                         size=gt.shape,
                         mode='bilinear',
                         align_corners=False)
        res = res.sigmoid().data.cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
Exemple #3
0

parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--pth_path', type=str, default='./snapshots/PraNet-ori.pth')
opt = parser.parse_args()

for _data_name in ['CVC-300', 'CVC-ClinicDB', 'CVC-ColonDB', 'ETIS-LaribPolypDB', 'Kvasir']:
    data_path = './data/TestDataset/{}/'.format(_data_name)
    save_path = './results/PraNet/{}/'.format(_data_name)
    model = PraNet()
    model.load(opt.pth_path)
    model.eval()

    os.makedirs(save_path, exist_ok=True)
    image_root = '{}/images/'.format(data_path)
    gt_root = '{}/masks/'.format(data_path)
    test_loader = test_dataset(image_root, gt_root, opt.testsize) \
        .set_attrs(batch_size=1, shuffle=False)

    for image, gt, name in test_loader:
        gt /= (gt.max() + 1e-08)
        (res5, res4, res3, res2) = model(image)

        res = res2
        c, h, w = gt.shape
        upsample = nn.upsample(res, size=(h, w), mode='bilinear')
        res = res.sigmoid().data.squeeze()
        res = ((res - res.min()) / ((res.max() - res.min()) + 1e-08))
        print('> {} - {}'.format(_data_name, name))
        imageio.imwrite((save_path + name[0]), res)