f'Experiment_Code: app_02;\n' os.environ['CUDA_VISIBLE_DEVICES'] = '1,2,3' device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) loader, _, _ = iPERLoader(data_root=args.path, batch=128, transform=transform).data_load() model = VQVAE().to(device) model = nn.DataParallel(model).cuda() optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None if args.sched == 'cycle': scheduler = CycleScheduler(optimizer, args.lr, n_iter=len(loader) * args.epoch, momentum=None) print('Loading Model...', end='') model.load_state_dict(
win='board') os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) # TODO use a little set for sanity check # _, _, loader = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() _, loader, _ = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() # model for image model_img = VQVAE().to(device) model_img = nn.DataParallel(model_img).cuda() if is_load_model_img is True: print('Loading model_img ...', end='') model_img.load_state_dict(torch.load(args.model_img_path)) model_img.eval() print('Done') else: print('model_img Initialized.') # optimizer_img = optim.Adam(model_img.parameters(), lr=args.lr) # model for condition
f'Experiment_Code: {EXPERIMENT_CODE};\n', win='board') os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = 'cuda' transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) # TODOn use a little set for sanity check # _, _, loader = iPERLoader(data_root=args.path, batch=BATCH_SIZE, transform=transform).data_load() loader, _, _ = iPERLoader(data_root=args.path, batch=BATCH_SIZE, transform=transform).data_load() # model model = VQVAE().to(device) model = nn.DataParallel(model).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None if args.sched == 'cycle': scheduler = CycleScheduler(optimizer, args.lr, n_iter=len(loader) * args.epoch, momentum=None) print('Loading Model...', end='') model.load_state_dict(