def test_preprocess_fn_return_dataset_element_spec_oov_buckets(self):
     ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
     preprocess_fn = stackoverflow_word_prediction.create_preprocess_fn(
         client_batch_size=32,
         client_epochs_per_round=1,
         max_sequence_length=10,
         max_elements_per_client=100,
         vocab=['one', 'must'],
         num_oov_buckets=10)
     preprocessed_ds = preprocess_fn(ds)
     self.assertEqual(preprocessed_ds.element_spec,
                      (tf.TensorSpec(shape=[None, 10], dtype=tf.int64),
                       tf.TensorSpec(shape=[None, 10], dtype=tf.int64)))
Exemple #2
0
def _preprocess_stackoverflow(vocab_size, num_oov_buckets, sequence_length,
                              num_validation_examples, client_batch_size,
                              client_epochs_per_round, max_elements_per_user):
    """Prepare stackoverflow dataset."""
    train_clientdata, _, test_clientdata = (
        tff.simulation.datasets.stackoverflow.load_data())
    dataset_vocab = stackoverflow_dataset.create_vocab(vocab_size)

    base_test_dataset = test_clientdata.create_tf_dataset_from_all_clients()
    preprocess_val_and_test = stackoverflow_dataset.create_preprocess_fn(
        vocab=dataset_vocab,
        num_oov_buckets=num_oov_buckets,
        client_batch_size=128,
        client_epochs_per_round=client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=-1,
        max_shuffle_buffer_size=1)
    test_set = preprocess_val_and_test(
        base_test_dataset.skip(num_validation_examples))
    validation_set = preprocess_val_and_test(
        base_test_dataset.take(num_validation_examples))

    train_dataset_preprocess_comp = stackoverflow_dataset.create_preprocess_fn(
        vocab=dataset_vocab,
        num_oov_buckets=num_oov_buckets,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user,
        max_shuffle_buffer_size=max_elements_per_user)

    @tff.tf_computation(tf.string)
    def train_dataset_computation(client_id):
        client_train_data = train_clientdata.dataset_computation(client_id)
        return train_dataset_preprocess_comp(client_train_data)

    return train_dataset_computation, train_clientdata, validation_set, test_set
    def test_preprocess_fn_returns_correct_sequence(self):
        ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
        preprocess_fn = stackoverflow_word_prediction.create_preprocess_fn(
            client_batch_size=32,
            client_epochs_per_round=1,
            max_sequence_length=6,
            max_elements_per_client=100,
            vocab=['one', 'must'],
            num_oov_buckets=1)

        preprocessed_ds = preprocess_fn(ds)
        element = next(iter(preprocessed_ds))

        # BOS is len(vocab)+2, EOS is len(vocab)+3, pad is 0, OOV is len(vocab)+1
        self.assertAllEqual(self.evaluate(element[0]),
                            np.array([[4, 1, 2, 3, 5, 0]]))
 def test_preprocess_fn_returns_correct_sequence_oov_buckets(self):
     ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
     preprocess_fn = stackoverflow_word_prediction.create_preprocess_fn(
         client_batch_size=32,
         client_epochs_per_round=1,
         max_sequence_length=6,
         max_elements_per_client=100,
         vocab=['one', 'must'],
         num_oov_buckets=3)
     preprocessed_ds = preprocess_fn(ds)
     element = next(iter(preprocessed_ds))
     # BOS is len(vocab)+3+1
     self.assertEqual(self.evaluate(element[0])[0][0], 6)
     self.assertEqual(self.evaluate(element[0])[0][1], 1)
     self.assertEqual(self.evaluate(element[0])[0][2], 2)
     # OOV is [len(vocab)+1, len(vocab)+2, len(vocab)+3]
     self.assertIn(self.evaluate(element[0])[0][3], [3, 4, 5])
     # EOS is len(vocab)+3+2
     self.assertEqual(self.evaluate(element[0])[0][4], 7)
     # pad is 0
     self.assertEqual(self.evaluate(element[0])[0][5], 0)
Exemple #5
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        client_datasets_random_seed: Optional[int] = None,
        vocab_size: Optional[int] = 10000,
        num_oov_buckets: Optional[int] = 1,
        sequence_length: Optional[int] = 20,
        max_elements_per_user: Optional[int] = 1000,
        num_validation_examples: Optional[int] = 10000,
        embedding_size: Optional[int] = 96,
        latent_size: Optional[int] = 670,
        num_layers: Optional[int] = 1,
        shared_embedding: Optional[bool] = False,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_so_nwp',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        **kwargs):
    """Runs an iterative process on the Stack Overflow next word prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        embedding_size=embedding_size,
        latent_size=latent_size,
        num_layers=num_layers,
        shared_embedding=shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    # TODO(b/161914546): consider moving evaluation to use
    # `tff.learning.build_federated_evaluation` to get metrics over client
    # distributions, as well as the example weight means from this centralized
    # evaluation.
    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=vocab_size,
        max_sequence_length=sequence_length,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
        vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    iterative_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_preprocess_comp, iterative_process)

    training_process.get_model_weights = iterative_process.get_model_weights

    client_datasets_fn = training_utils.build_client_datasets_fn(
        dataset=train_clientdata,
        clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
def configure_training(
        task_spec: training_specs.TaskSpec,
        vocab_size: int = 10000,
        num_oov_buckets: int = 1,
        sequence_length: int = 20,
        max_elements_per_user: int = 1000,
        num_validation_examples: int = 10000,
        embedding_size: int = 96,
        latent_size: int = 670,
        num_layers: int = 1,
        shared_embedding: bool = False) -> training_specs.RunnerSpec:
    """Configures training for Stack Overflow next-word prediction.

  This method will load and pre-process datasets and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process compatible with `federated_research.utils.training_loop`.

  Args:
    task_spec: A `TaskSpec` class for creating federated training tasks.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        embedding_size=embedding_size,
        latent_size=latent_size,
        num_layers=num_layers,
        shared_embedding=shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    # TODO(b/161914546): consider moving evaluation to use
    # `tff.learning.build_federated_evaluation` to get metrics over client
    # distributions, as well as the example weight means from this centralized
    # evaluation.
    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=vocab_size,
        max_sequence_length=sequence_length,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
        vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=task_spec.client_batch_size,
        client_epochs_per_round=task_spec.client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    iterative_process = task_spec.iterative_process_builder(tff_model_fn)

    @tff.tf_computation(tf.string)
    def train_dataset_computation(client_id):
        client_train_data = train_clientdata.dataset_computation(client_id)
        return train_dataset_preprocess_comp(client_train_data)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_computation, iterative_process)
    client_ids_fn = training_utils.build_sample_fn(
        train_clientdata.client_ids,
        size=task_spec.clients_per_round,
        replace=False,
        random_seed=task_spec.client_datasets_random_seed)
    # We convert the output to a list (instead of an np.ndarray) so that it can
    # be used as input to the iterative process.
    client_sampling_fn = lambda x: list(client_ids_fn(x))

    training_process.get_model_weights = iterative_process.get_model_weights

    centralized_validation_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    def validation_fn(server_state, round_num):
        del round_num
        return centralized_validation_fn(
            iterative_process.get_model_weights(server_state))

    centralized_test_fn = training_utils.build_centralized_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    def test_fn(server_state):
        return centralized_test_fn(
            iterative_process.get_model_weights(server_state))

    return training_specs.RunnerSpec(iterative_process=training_process,
                                     client_datasets_fn=client_sampling_fn,
                                     validation_fn=validation_fn,
                                     test_fn=test_fn)
Exemple #7
0
def run_federated(iterative_process_builder: Callable[
    ..., tff.templates.IterativeProcess],
                  client_epochs_per_round: int,
                  client_batch_size: int,
                  clients_per_round: int,
                  max_elements_per_user: int,
                  total_rounds: int = 3000,
                  vocab_size: int = 10000,
                  num_oov_buckets: int = 1,
                  sequence_length: int = 20,
                  num_validation_examples: int = 10000,
                  dim_embed: int = 96,
                  dim_model: int = 512,
                  dim_hidden: int = 2048,
                  num_heads: int = 8,
                  num_layers: int = 1,
                  max_position_encoding: int = 1000,
                  dropout: float = 0.1,
                  client_datasets_random_seed: Optional[int] = None,
                  experiment_name: str = 'federated_stackoverflow',
                  root_output_dir: str = '/tmp/fedopt_guide',
                  max_val_test_batches: Optional[int] = None,
                  **kwargs) -> None:
    """Configures training for Stack Overflow next-word prediction.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research/fedopt_guide/training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset. This has be to a positive value or -1 (which means that
      all elements are taken for training).
    total_rounds: The number of federated training rounds.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    num_validation_examples: The number of test examples to use for validation.
    dim_embed: An integer for the dimension of the token embeddings.
    dim_model: An integer for the dimension of features of MultiHeadAttention
      layers.
    dim_hidden: An integer for the dimension of hidden layers of the FFN.
    num_heads:  An integer for the number of attention heads.
    num_layers: An integer for the number of Transformer blocks.
    max_position_encoding: Maximum number of positions for position embeddings.
    dropout: Dropout rate.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_val_test_batches: If set to a positive integer, val and test datasets
      are capped to at most that many batches. If set to None or a nonpositive
      integer, the full datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details on
      supported arguments, see
      `federated_research/fedopt_guide/training_utils.py`.

  Returns:
    A `RunnerSpec` containing attributes used for running the newly created
    federated task.
  """

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    _, validation_dataset, test_dataset = stackoverflow_word_prediction.get_centralized_datasets(
        vocab_size=vocab_size,
        max_sequence_length=sequence_length,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    if max_val_test_batches and max_val_test_batches >= 1:
        validation_dataset = validation_dataset.take(max_val_test_batches)
        test_dataset = test_dataset.take(max_val_test_batches)

    model_builder = functools.partial(
        transformer_models.create_transformer_lm,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        dim_embed=dim_embed,
        dim_model=dim_model,
        dim_hidden=dim_hidden,
        num_heads=num_heads,
        num_layers=num_layers,
        max_position_encoding=max_position_encoding,
        dropout=dropout,
        name='stackoverflow-transformer')

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_word_prediction.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_dataset_preprocess_comp = stackoverflow_word_prediction.create_preprocess_fn(
        vocab=stackoverflow_word_prediction.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_sequence_length=sequence_length,
        max_elements_per_client=max_elements_per_user)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    iterative_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    if hasattr(train_clientdata, 'dataset_computation'):

        @tff.tf_computation(tf.string)
        def train_dataset_computation(client_id):
            client_train_data = train_clientdata.dataset_computation(client_id)
            return train_dataset_preprocess_comp(client_train_data)

        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_dataset_computation, iterative_process)
        client_ids_fn = tff.simulation.build_uniform_sampling_fn(
            train_clientdata.client_ids,
            size=clients_per_round,
            replace=False,
            random_seed=client_datasets_random_seed)
        # We convert the output to a list (instead of an np.ndarray) so that it can
        # be used as input to the iterative process.
        client_sampling_fn = lambda x: list(client_ids_fn(x))
    else:
        training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
            train_dataset_preprocess_comp, iterative_process)
        client_sampling_fn = tff.simulation.build_uniform_client_sampling_fn(
            dataset=train_clientdata,
            clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed)

    training_process.get_model_weights = iterative_process.get_model_weights

    evaluate_fn = tff.learning.build_federated_evaluation(tff_model_fn)

    def validation_fn(model_weights, round_num):
        del round_num
        return evaluate_fn(model_weights, [validation_dataset])

    def test_fn(model_weights):
        return evaluate_fn(model_weights,
                           [validation_dataset.concatenate(test_dataset)])

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      train_client_datasets_fn=client_sampling_fn,
                      evaluation_fn=validation_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)