def run2(): rankers = [] ranker_params = { 'learning_rate': 0.1, 'learning_rate_decay': 0.9999977, } sim_args, other_args = parser.parse_all_args(ranker_params) run_name = 'PDGD' rankers.append((run_name, PDGD, other_args)) run_name = 'DeepPDGD' rankers.append((run_name, DeepPDGD, other_args)) sim = DataSimulation(sim_args) sim.run(rankers)
def run1(): rankers = [] # NSGD with document space projection ranker_params = { 'learning_rate_decay': 0.9999977, 'k_initial': 3, 'k_increase': False, 'GRAD_SIZE':60, 'EXP_SIZE':25, 'TB_QUEUE_SIZE':10, 'TB_WINDOW_SIZE':50, 'prev_qeury_len': 10} sim_args, other_args = parser.parse_all_args(ranker_params) run_name = 'DSGD_TD_NSGD' rankers.append((run_name, TD_NSGD_DSP, other_args)) sim = DataSimulation(sim_args) sim.run(rankers)
def func_pairrank(args, dir_name): ranker_params = { "learning_rate": args.lr, "learning_rate_decay": args.lr_decay, "update": args.update, "_lambda": args.lmbd, "alpha": args.alpha, "refine": args.refine, "rank": args.rank, "ind": args.ind, } sim_args, other_args = parser.parse_all_args(ranker_params) if args.update == "gd" or args.update == "gd_diag" or args.update == "gd_recent": ranker_name = "None-None-{}-{}-{}-{}-{}-{}-{}".format( args.update, args.lmbd, args.alpha, args.refine, args.rank, args.ind, args.seed, ) else: ranker_name = "{}-{}-{}-{}-{}-{}-{}-{}-{}".format( args.lr, args.lr_decay, args.update, args.lmbd, args.alpha, args.refine, args.rank, args.ind, args.seed, ) run_name = dir_name + ranker_name ranker = [(run_name, PairRank, other_args)] sim = DataSimulation(sim_args) sim.run(ranker)
rankers = [] for vec in [50]: parser.set_argument('n_embedding_features', vec) ranker_params = {'conv_hist': 10} arg_str, args, sim_args, mgd_args, emb_args = parser.parse_all_args(ranker_params) run_name = 'PMGD19cand' rankers.append((arg_str, run_name, ProbMeanBandit, [mgd_args], {})) # run_name = 'DocSim_StaticKMeans_%dvectors' % vec # rankers.append((arg_str, run_name, StaticKMeans, [emb_args, mgd_args], ranker_params)) # # ranker_params = {'gradient_weight': float(0), 'kernel': 'linear'} # arg_str, args, sim_args, mgd_args, emb_args = parser.parse_all_args(ranker_params) # run_name = 'DocSim_linear_%dvectors' % vec # rankers.append((arg_str, run_name, NormalizedSVMBandit, [emb_args, mgd_args], ranker_params)) # # ranker_params = {'conv_hist': 10, 'change_threshold': 0.01, 'linear_renorm': False} # arg_str, args, sim_args, mgd_args, emb_args = parser.parse_all_args(ranker_params) # run_name = 'DocSim_cascade%dhist%sthres_linear_%dvectors' % ( # ranker_params['conv_hist'], ranker_params['change_threshold'], vec) # rankers.append((arg_str, run_name, DocSim, [emb_args, mgd_args], ranker_params)) # # ranker_params = {'conv_hist': 10, 'change_threshold': 0.01, 'linear_renorm': False} # arg_str, args, sim_args, mgd_args, emb_args = parser.parse_all_args(ranker_params) # run_name = 'DocSim_cascadeKMeans_%dvectors' % (vec) # rankers.append((arg_str, run_name, CascadeKMeans, [emb_args, mgd_args], ranker_params)) sim = DataSimulation(sim_args) sim.run(rankers)