Exemple #1
0
def perform_task_chunking(parameters, task_id=None):
    """Chunk parameter sets into more manageable sizes

    Uses functions provided by the task model to create a group of
    parameter sets that make up the arg.

    Args:
        parameters: parameter stream containing all kwargs to load data

    Returns:
        parameters with a list of geographic and time ranges

    """

    if parameters is None:
        return None

    task = SlipTask.objects.get(pk=task_id)
    dc = DataAccessApi(config=task.config_path)

    dates = dc.list_acquisition_dates(**parameters)
    task_chunk_sizing = task.get_chunk_size()

    geographic_chunks = create_geographic_chunks(
        longitude=parameters['longitude'],
        latitude=parameters['latitude'],
        geographic_chunk_size=task_chunk_sizing['geographic'])

    time_chunks = generate_baseline(dates, task.baseline_length)

    logger.info("Time chunks: {}, Geo chunks: {}".format(len(time_chunks), len(geographic_chunks)))

    dc.close()
    task.update_status("WAIT", "Chunked parameter set.")
    return {'parameters': parameters, 'geographic_chunks': geographic_chunks, 'time_chunks': time_chunks}
Exemple #2
0
def perform_task_chunking(parameters, task_id=None):
    """Chunk parameter sets into more manageable sizes

    Uses functions provided by the task model to create a group of
    parameter sets that make up the arg.

    Args:
        parameters: parameter stream containing all kwargs to load data

    Returns:
        parameters with a list of geographic and time ranges

    """

    if parameters is None:
        return None

    task = NdviAnomalyTask.objects.get(pk=task_id)
    dc = DataAccessApi(config=task.config_path)
    dates = dc.list_acquisition_dates(**parameters)
    task_chunk_sizing = task.get_chunk_size()

    geographic_chunks = create_geographic_chunks(
        longitude=parameters['longitude'],
        latitude=parameters['latitude'],
        geographic_chunk_size=task_chunk_sizing['geographic'])

    grouped_dates_params = {**parameters}
    grouped_dates_params.update({
        'time': (datetime(1000, 1,
                          1), task.time_start - timedelta(microseconds=1))
    })
    acquisitions = dc.list_acquisition_dates(**grouped_dates_params)
    grouped_dates = group_datetimes_by_month(
        acquisitions,
        months=list(map(int, task.baseline_selection.split(","))))
    # create a single monolithic list of all acq. dates - there should be only one.
    time_chunks = []
    for date_group in grouped_dates:
        time_chunks.extend(grouped_dates[date_group])
    # time chunks casted to a list, essnetially.
    time_chunks = [time_chunks]

    logger.info("Time chunks: {}, Geo chunks: {}".format(
        len(time_chunks), len(geographic_chunks)))

    dc.close()
    task.update_status("WAIT", "Chunked parameter set.")

    return {
        'parameters': parameters,
        'geographic_chunks': geographic_chunks,
        'time_chunks': time_chunks
    }
Exemple #3
0
def perform_task_chunking(parameters, task_id=None):
    """Chunk parameter sets into more manageable sizes

    Uses functions provided by the task model to create a group of
    parameter sets that make up the arg.

    Args:
        parameters: parameter stream containing all kwargs to load data

    Returns:
        parameters with a list of geographic and time ranges

    """

    if parameters is None:
        return None

    task = CoastalChangeTask.objects.get(pk=task_id)
    dc = DataAccessApi(config=task.config_path)

    dates = dc.list_acquisition_dates(**parameters)
    task_chunk_sizing = task.get_chunk_size()

    geographic_chunks = create_geographic_chunks(
        longitude=parameters['longitude'],
        latitude=parameters['latitude'],
        geographic_chunk_size=task_chunk_sizing['geographic'])

    grouped_dates = group_datetimes_by_year(dates)
    # we need to pair these with the first year - subsequent years.
    time_chunks = None
    if task.animated_product.animation_id == 'none':
        # first and last only
        time_chunks = [[
            grouped_dates[task.time_start], grouped_dates[task.time_end]
        ]]
    else:
        initial_year = grouped_dates.pop(task.time_start)
        time_chunks = [[initial_year, grouped_dates[year]]
                       for year in grouped_dates]
    logger.info("Time chunks: {}, Geo chunks: {}".format(
        len(time_chunks), len(geographic_chunks)))

    dc.close()
    task.update_status("WAIT", "Chunked parameter set.")

    return {
        'parameters': parameters,
        'geographic_chunks': geographic_chunks,
        'time_chunks': time_chunks
    }