Exemple #1
0
 def calc_z_prior(self, y):
     z_mean_prior = dgm.forwardPass(self.p_z_y_mean, y)
     z_log_var_prior = dgm.forwardPass(self.p_z_y_log_var, y)
     z_mean_prior, z_log_var_prior = tf.reshape(
         z_mean_prior, [self.mc_samples, -1, self.n_z]), tf.reshape(
             z_log_var_prior, [self.mc_samples, -1, self.n_z])
     return z_mean_prior, z_log_var_prior
 def sample_z(self, x, y, n_samples=None):
     if n_samples == None:
         n_samples = self.mc_samples
     l_qz_in = tf.concat([x, y], axis=-1)
     z_mean = dgm.forwardPass(self.q_z_xy_mean, l_qz_in)
     z_log_var = dgm.forwardPass(self.q_z_xy_log_var, l_qz_in)
     return z_mean, z_log_var, dgm.sampleNormal(z_mean, z_log_var,
                                                n_samples)
Exemple #3
0
 def sample_a(self, x, n_samples=None):
     if n_samples == None:
         n_samples = self.mc_samples
     l_qa_in = x
     a_mean = dgm.forwardPass(self.q_a_x_mean, l_qa_in)
     a_log_var = dgm.forwardPass(self.q_a_x_log_var, l_qa_in)
     return a_mean, a_log_var, dgm.sampleNormal(a_mean, a_log_var,
                                                n_samples)
Exemple #4
0
 def sample_z(self, x, y, a, n_samples=None):
     if n_samples == None:
         n_samples = 1
     l_qz_in = tf.reshape(tf.concat([x, y, a], axis=-1),
                          [-1, self.n_x + self.n_y + self.n_a])
     z_mean = dgm.forwardPass(self.q_z_axy_mean, l_qz_in)
     z_log_var = dgm.forwardPass(self.q_z_axy_log_var, l_qz_in)
     z = dgm.sampleNormal(z_mean, z_log_var, mc_samps=n_samples)
     z_mean, z_log_var = tf.reshape(
         z_mean, [self.mc_samples, -1, self.n_z]), tf.reshape(
             z_log_var, [self.mc_samples, -1, self.n_z])
     z = tf.reshape(z, [self.mc_samples, -1, self.n_z])
     return z_mean, z_log_var, z
Exemple #5
0
 def calc_z_prior(self, y):
     z_mean_prior = dgm.forwardPass(self.p_z_y_mean, y)
     z_log_var_prior = dgm.forwardPass(self.p_z_y_log_var, y)
     return z_mean_prior, z_log_var_prior