def initialize_networks(self): """ Initialize all model networks """ if self.x_dist == 'Gaussian': self.px_yz = dgm.initGaussNet(self.n_z+self.n_y, self.n_hid, self.n_x, 'px_yz_') elif self.x_dist == 'Bernoulli': self.px_yz = dgm.initCatNet(self.n_z+self.n_y, self.n_hid, self.n_x, 'px_yz_') self.qz_xy = dgm.initGaussNet(self.n_x+self.n_y, self.n_hid, self.n_z, 'qz_xy_') self.qy_x = dgm.initCatNet(self.n_x, self.n_hid, self.n_y, 'qy_x_') # recognition network self.py_x = bnn.initTiedBNN(self.qy_x, self.n_hid, self.initVar, 'py_x_', 'Categorical') # discriminator
def initialize_networks(self): """ Initialize all model networks """ if self.x_dist == 'Gaussian': self.px_z = dgm.initGaussNet(self.n_z, self.n_hid, self.n_x, 'px_z_') elif self.x_dist == 'Bernoulli': self.px_z = dgm.initCatNet(self.n_z, self.n_hid, self.n_x, 'px_y_') self.pz_c = dgm.initGaussNet(self.n_c, self.n_hid, self.n_z, 'pz_c_') self.qc_x = dgm.initStatNet(self.n_x, self.n_hid, self.n_e, self.n_c, 'qc_x_') self.qz_xc = dgm.initGaussNet(self.n_x+self.n_c, self.n_hid, self.n_z, 'qz_xc_')
def initialize_networks(self): """ Initialize all model networks """ if self.x_dist == 'Gaussian': self.px_z = dgm.initGaussNet(self.n_z, self.n_hid, self.n_x, 'px_z_') elif self.x_dist == 'Bernoulli': self.px_z = dgm.initCatNet(self.n_z, self.n_hid, self.n_x, 'px_z_') self.qz_x = dgm.initGaussNet(self.n_x, self.n_hid, self.n_z, 'qz_x_') self.qy_xz = dgm.initCatNet(self.n_x+self.n_z, self.n_hid, self.n_y, 'qy_xz_') self.py_xz = dgm.initCatNet(self.n_x+self.n_z, self.n_hid, self.n_y, 'py_xz_')
def initialize_networks(self): """ Initialize all model networks """ if self.x_dist == 'Gaussian': self.px_yza = dgm.initGaussNet(self.n_y + self.n_z + self.n_a, self.n_hid, self.n_x, 'px_yza_') elif self.x_dist == 'Bernoulli': self.px_yza = dgm.initCatNet(self.n_y + self.n_z + self.n_a, self.n_hid, self.n_x, 'px_yza_') self.pa_yz = dgm.initGaussNet(self.n_y + self.n_z, self.n_hid, self.n_a, 'pa_yz_') self.qz_xya = dgm.initGaussNet(self.n_x + self.n_y + self.n_a, self.n_hid, self.n_z, 'qz_xya_') self.qa_x = dgm.initGaussNet(self.n_x, self.n_hid, self.n_a, 'qa_x_') self.qy_xa = dgm.initCatNet(self.n_x + self.n_a, self.n_hid, self.n_y, 'qy_xa_')
def initialize_networks(self): """ Initialize all model networks """ if self.x_dist == 'Gaussian': self.px_yza = dgm.initGaussNet(self.n_y + self.n_z + self.n_a, self.n_hid, self.n_x, 'px_yza_') elif self.x_dist == 'Bernoulli': self.px_yza = dgm.initCatNet(self.n_y + self.n_z + self.n_a, self.n_hid, self.n_x, 'px_yza_') self.pa_yz = dgm.initGaussNet(self.n_y + self.n_z, self.n_hid, self.n_a, 'pa_yz_') self.qz_xya = dgm.initGaussNet(self.n_x + self.n_y + self.n_a, self.n_hid, self.n_z, 'qz_xya_') self.qa_x = dgm.initGaussNet(self.n_x, self.n_hid, self.n_a, 'qa_x_') self.pa_x = dgm.initTiedNetwork(self.qa_x, self.n_hid, 'pa_x_', 'Gauss') self.qy_xa = dgm.initCatNet(self.n_x + self.n_a, self.n_hid, self.n_y, 'qy_xa_') self.py_xa = bnn.initTiedBNN(self.qy_xa, self.n_hid, self.initVar, 'py_xa_', 'Categorical')