# network
    kwargs = {}
    module_list = []
    if args.use_fpn:
        module_list.append('fpn')
    if args.norm_layer is not None:
        module_list.append(args.norm_layer)
    net_name = '_'.join(('faster_rcnn', *module_list, args.network, args.dataset))
    args.save_prefix += net_name
    if args.pretrained.lower() in ['true', '1', 'yes', 't']:
        net = model_zoo.get_model(net_name, pretrained=True, root=args.root, **kwargs)
    else:
        net = model_zoo.get_model(net_name, pretrained=False, **kwargs)
        net.load_state_dict(args.pretrained.strip())

    net.to(device)

    # testing data
    val_dataset, val_metric = get_dataset(net.short, net.max_size, args.dataset)
    val_data = get_dataloader(val_dataset, args.batch_size, args.num_workers,
                              distributed, args.dataset == 'coco')
    classes = val_dataset.classes  # class names

    # testing
    val_metric = validate(net, val_data, device, val_metric, args.dataset == 'coco')
    synchronize()
    names, values = accumulate_metric(val_metric)
    if is_main_process():
        for k, v in zip(names, values):
            print(k, v)
Exemple #2
0
    def train(self):
        train_dataset = CIFAR10(root=os.path.join(self.cfg.data_root,
                                                  'cifar10'),
                                train=True,
                                transform=self.transform_train,
                                download=True)
        train_sampler = make_data_sampler(train_dataset, True,
                                          self.distributed)
        train_batch_sampler = data.sampler.BatchSampler(
            train_sampler, self.cfg.batch_size, True)
        train_data = data.DataLoader(train_dataset,
                                     num_workers=self.cfg.num_workers,
                                     batch_sampler=train_batch_sampler)

        val_dataset = CIFAR10(root=os.path.join(self.cfg.data_root, 'cifar10'),
                              train=False,
                              transform=self.transform_test)
        val_sampler = make_data_sampler(val_dataset, False, self.distributed)
        val_batch_sampler = data.sampler.BatchSampler(val_sampler,
                                                      self.cfg.batch_size,
                                                      False)
        val_data = data.DataLoader(val_dataset,
                                   num_workers=self.cfg.num_workers,
                                   batch_sampler=val_batch_sampler)

        optimizer = optim.SGD(self.net.parameters(),
                              nesterov=True,
                              lr=self.cfg.lr,
                              weight_decay=self.cfg.wd,
                              momentum=self.cfg.momentum)
        metric = Accuracy()
        train_metric = Accuracy()
        loss_fn = nn.CrossEntropyLoss()
        if is_main_process():
            train_history = TrainingHistory(
                ['training-error', 'validation-error'])

        iteration = 0
        lr_decay_count = 0
        best_val_score = 0

        for epoch in range(self.cfg.num_epochs):
            tic = time.time()
            train_metric.reset()
            metric.reset()
            train_loss = 0
            num_batch = len(train_data)

            if epoch == self.lr_decay_epoch[lr_decay_count]:
                set_learning_rate(
                    optimizer,
                    get_learning_rate(optimizer) * self.cfg.lr_decay)
                lr_decay_count += 1

            for i, batch in enumerate(train_data):
                image = batch[0].to(self.device)
                label = batch[1].to(self.device)

                output = self.net(image)
                loss = loss_fn(output, label)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                train_loss += loss.item()
                train_metric.update(label, output)
                iteration += 1

            metric = self.validate(val_data, metric)
            synchronize()
            train_loss /= num_batch
            train_loss = reduce_list(all_gather(train_loss))
            name, acc = accumulate_metric(train_metric)
            name, val_acc = accumulate_metric(metric)
            if is_main_process():
                train_history.update([1 - acc, 1 - val_acc])
                train_history.plot(save_path='%s/%s_history.png' %
                                   (self.plot_path, self.cfg.model))
                if val_acc > best_val_score:
                    best_val_score = val_acc
                    torch.save(
                        self.net.state_dict(), '%s/%.4f-cifar-%s-%d-best.pth' %
                        (self.save_dir, best_val_score, self.cfg.model, epoch))
                logging.info(
                    '[Epoch %d] train=%f val=%f loss=%f time: %f' %
                    (epoch, acc, val_acc, train_loss, time.time() - tic))

                if self.save_period and self.cfg.save_dir and (
                        epoch + 1) % self.save_period == 0:
                    torch.save(
                        self.net.module.state_dict() if self.distributed else
                        self.net.state_dict(), '%s/cifar10-%s-%d.pth' %
                        (self.save_dir, self.cfg.model, epoch))

        if is_main_process() and self.save_period and self.save_dir:
            torch.save(
                self.net.module.state_dict() if self.distributed else
                self.net.state_dict(), '%s/cifar10-%s-%d.pth' %
                (self.save_dir, self.cfg.model, self.cfg.num_epochs - 1))
        device = torch.device('cuda')
    else:
        distributed = False

    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method=args.init_method)

    # Load Model
    model_name = args.network
    if args.pretrained.lower() in ['true', '1', 'yes', 't']:
        pretrained = True
    else:
        pretrained = False
    kwargs = {'classes': 10, 'pretrained': pretrained, 'root': args.root}
    net = model_zoo.get_model(model_name, **kwargs)
    net.to(device)

    # testing data
    val_metric = Accuracy()
    val_data = get_dataloader(args.batch_size, args.num_workers,
                              args.data_root, distributed)

    # testing
    metric = validate(net, val_data, device, val_metric)
    synchronize()
    name, value = accumulate_metric(metric)
    if is_main_process():
        print(name, value)
        distributed = False

    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method=args.init_method)

    # Load Model
    if args.pretrained.lower() in ['true', '1', 'yes', 't']:
        pretrained = True
    else:
        pretrained = False
    model_name = args.model
    kwargs = {'classes': 1000, 'pretrained': pretrained, 'root': args.root}

    net = model_zoo.get_model(model_name, **kwargs)
    net.to(device)

    # testing data
    acc_top1 = Accuracy()
    acc_top5 = TopKAccuracy(5)
    val_data = get_dataloader(args, distributed)

    # testing
    acc_top1, acc_top5 = validate(net, val_data, device, acc_top1, acc_top5)
    synchronize()
    name1, top1 = accumulate_metric(acc_top1)
    name5, top5 = accumulate_metric(acc_top5)
    if is_main_process():
        print('%s: %f, %s: %f' % (name1, top1, name5, top5))