from utils.elpv_reader import load_dataset import cv2 import numpy as np import shutil import os from sklearn.model_selection import train_test_split destination_folder = 'solar_panels_products_V2' if not os.path.exists(destination_folder): os.mkdir(destination_folder) # datafolder is the relative path for the contents in the elpv dataset images, probs, types = load_dataset(datafolder='elpv_dataset') train_images, test_images, train_probs, test_probs, train_types, test_types = train_test_split( images, probs, types, test_size=0.1) def create_dataset(images, probs, types, split): threshold = 0.6 data_folder = os.path.join(destination_folder, split) if not os.path.exists(data_folder): os.mkdir(data_folder) idx = 0
#!/usr/bin/env python # coding: utf-8 # In[1]: import tensorflow as tf import numpy as np from matplotlib import pyplot as plt # In[2]: from utils.elpv_reader import load_dataset images, proba, types = load_dataset() # In[3]: import matplotlib.pyplot as plt from tensorflow.keras import datasets, layers, models height = 200 # In[4]: images = images / 255. images = images.reshape(2624, height, height, 1) # In[5]: model = models.Sequential() model.add( layers.Conv2D(64, (7, 7),